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Unit-3: Semi-classical treatment of radiation-matter interaction

Theoretical basis of interaction of radiation with matter: time dependent perturbation theory.

Harmonic perturbation and transition probabilities, Einsteins A& B co-efficient, LASER and
MASER
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Time-Dependence
The basic equation governing the time-evolution of the wave function between measurements is the
Schrédinger equation:
v
ih— = HY
at _ _
If the energy eigenfunctions of the system obtained by solving Hu,, = E, u, where, H = (— h?/2m)V? + V,

are u, then, by completeness, the wave function at any time t can be expressed as a linear combination of
Up

Y6 = ) an(Oun(®)

n
where the coefficients a,, are, in general, functions of time. So far, we have restricted our discussion to

systems whose Hamiltonians have no explicit time dependence, but we shall now extend our treatment to
include cases where time-varying forces are acting. These problems can often be very difficult to solve and
we shall restrict our consideration to those where particular simplifying assumptions can be applied.-

THE SUDDEN APPROXIMATION
This is one of the simplifying assumptions. The sudden approximation can be used when the Hamiltonian
changes instantaneously from one time-independent form — say, H; to another —say, H, — at a time which
we take to be t = 0. This means that,

H=H t< 0}

H=H, t>0
We assume that the eigenfunctions of A, and H, are u,, and v,,, respectively. We also assume that the system
is known to be in one of the eigenstates of H; — say, that is represented by u, before the change. We shall
obtain the form of the wave function at times t > 0, and hence the probabilities that a subsequent energy
measurement will yield a particular eigenvalue of H,. We first note that the form of the Schrédinger equation
ensures that a finite discontinuity in A produces a similar discontinuity in 0i/dt. Therefore 1 must be
continuous in time. Thus, immediately before and after the change we must have

W, 0) = ug(r) = ) an(0)vn (@)

n
where we have used completeness to expand u, in terms of the set of eigenfunctions v,,. As H, is time-

independent, we can use

W0, = ) an(Oun(rexp (— iFyt/h)
n
to obtain an expression for W at all times greater than zero,

Y(rt) = z a,(0)v,(r)exp (—iE,t/h)
n
where, the energy levels E,, are the eigenvalues of H,. Expressions for the constants a,,(0) can be obtained

by multiplying both sides of
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W, 0) = up(r) = ) an(0)v(r)

n

by v, and integrating over all space. Thus
a,(0) = fv;; Uuedt

According to the quantum theory of measurement, the probability of obtaining any particular value E,, as a
result of a measurement of the energy at any time after the change is equal to |a,|?. Following such a
measurement, of course, the wave function collapses to become the corresponding eigenfunction v,. As an
example of a practical application of the sudden approximation is the change in the wave function of an atom
following a radioactive decay of its nucleus. Tritium (:*H) can decay by the emission of a § particle and a
neutrino to become a positively charged, one-electron ion whose nucleus is He. As far as the atomic
electron is concerned, therefore, its Hamiltonian has changed suddenly from that corresponding to a
hydrogen atom with nuclear charge Z = 1 to that of a He™ ion with Z = 2. Using the energy eigenfunctions
for a hydrogen-like (one-electron) system, we calculate the probabilities that a subsequent measurement of
the energy of the Het ion will find it in its ground state. The wave functions of the ground state of the tritium
atom and the He ion follow directly from the hydrogenic wave functions

AH:ug00 = (1/mad)'/? exp(—r/ay)

He*:uyg = (8/mad)/? exp(—2r/ay)
The probability of finding the He™ ion in its ground state is therefore |A|? where

A= fw(S/naS)l/z exp(—2r/ay) (1/mad)V/? exp(—r/ay) 4nridr
0

A= (8V2/a}) fooexp(— 3r/ay) r?dr = 0.838
0

so that the probability, |4|?, is 0.70. A particularly interesting feature of this example follows from the fact
that a value of the energy of the Het ion can, in principle, be obtained from a knowledge of the energy
associated with the nuclear decay, combined with those of the emitted [ particle and the neutrino (although
in practice the energy of the latter would be very difficult to measure). But the 8 particle and neutrino could
well be a large distance from the atom when these measurements are made, implying that the energy of the
ion would have been measured without apparently interfering with it. Nevertheless, quantum mechanics
states that this measurement will cause the wave function of the atom to change from a form similar to

W00 = ) an(O)va(r)exp (— iEnt/h)
n
to the appropriate energy eigenfunction. This apparent contradiction is an example of entanglement.


https://meet.google.com/beq-bejw-vqz

PG SEMESTER-I11 2024-2025 (PHYSICAL CHEMISTRY SPECIALIZATION) / CEM 302 / UNIT-3

GOOGLE MEET LINK: https://meet.google.com/crp-bhxx-vmv (CLASS-15, 07/10/2024)

Time -dependont Ewb»bw.ow fheovy : & Syt ot evolyea i Tume
Wowidtourgm for e Sysim, K (¥

Pav(lhowiag of We Howidlowigw : H(?,’r): k, (%) v (V)

H,(7) = twe - wdtpurdent biperiivbed Howl®owor

V(P &) = e - dependont periovbaloon

Su\mmﬂu ojustion © ph DL WED_ 4@ HTEY

21
ulku) - %ﬂwEWINOM o‘f Wo(Y) o (V) U-kl?) Ek“u(v)
1uk(vﬂ( Dowxplc,t?, ovironoymal Sef "kauk(?)

0, G h
LY =%w\=il. Mz
X . . . . » I(J'o
Y = ¢yl &LEL{’“‘ ¢ [Cnapy cou.,lg.wl\,owu,.’ﬁwm of o to |;.
Q(Y ) z k()u-k ?) (Mtouwvma‘ Sd-o-[ {:M[MJM

Wt ex b (= LhIY
ch(*)uu )exb( H) chu)u(?) b(- ,k)

RICRE chu)ukt?)
$dm&u;,.0wq}u dl Q
i ? chmuw )e,‘“k* = (Ho+4)2 G um) v

k
-
0¥, t,z [M W e ”erck({—)uk(v)'a K

P 60 ud?) e
k

.\.
" tz[_f@ w &‘&ﬂ Wide e Zﬁ«(ﬂ’ﬁw%lr)e Wk
+Zk LR De
by, U %%)Ult\?)ﬂ +z ck.(+) ku ?) e“ﬂk{' ch[{') U.ﬁ_(v)e/ |L+

H, ?)ZQG u.u,l?) g

+Zcu(+wl? B e’


https://meet.google.com/beq-bejw-vqz

PG SEMESTER-I11 2024-2025 (PHYSICAL CHEMISTRY SPECIALIZATION) / CEM 302 / UNIT-3

GOOGLE MEET LINK: https://meet.google.com/crp-bhxx-vmv (CLASS-15, 07/10/2024)

o, 3 [t 058 - VIR w @) 2" <o
k &t

. i
or, D %%” W@ 8 3 (v H U e g
: \
legte wealpliealoon by Ko [¥)

—_—

i o
> w8 ¥ @y, @ ) 6 LD u e Pk =0
k ot 1

Iuﬁﬂva_[:loh ovey all S\JM»

‘ oyt
> it 4 Ll 899 -3 G ualvluye ™ =0
k k

. _ _m_‘_
o, 2 ik ‘*}f" 6, 6K -3 gt Cualvlme 1 =0
k k

Fov e fonst B on KL UES To be won-3ew, el =
< itk Sl St S5 o gunlulu g
k

At

—_— = z Upa VI
l}‘l, T [ W

ov, M- _.\_ZCKH") mGgww“- phae  Vwk= (Um\\i\“k) ) w,MLL:w,M-wk
TR
HRY) = 'r&ot?)-r[?»\}(?,‘r) b= Puﬂwhvliou bav&lwdj)},O(-F <1
' v Suw Suow
G = EUR: B, () +P1(‘,k1(ﬂ+ --- % Tyl Suner exbrwsio

- ! . F\lwkeua“”u
%_ U’wm'*%om +f b‘“’j”‘):&zk(owrpcl“ F k2 )

uo k‘\' \ 2 “‘ww»l&-*
-deh- cem = _-‘- c “ e w - c‘ U a +.-
o sl e =gty Bt g it

Eqpalong e oo of Bifgorend proens o P |
&:io =0 Lo W towtont of AN TY ﬂ»}tbaﬁal veaudt | Sinee (e w/tawtmbv_&
ot ¥ p.arEouro n Tome-~ Mu—bwdud’f i


https://meet.google.com/beq-bejw-vqz

PG SEMESTER-I11 2024-2025 (PHYSICAL CHEMISTRY SPECIALIZATION) / CEM 302 / UNIT-3

GOOGLE MEET LINK: https://meet google.com/crp-bhxx-vmv (CLASS- 15 07/10/2024)

T utzk o bt u"iuz “’g e

Time-Dependent Perturbation Theory

A very important type of time-dependent problem is one where the Hamiltonian H can be written as the sum
of a time-independent part 170 and a small time-dependent perturbation H'. An example of this, to which we
shall return later, is the case of an atom subject to the oscillating electric field associated with an
electromagnetic wave. We shall now describe a method known as time-dependent perturbation theory for

obtaining approximate solutions to such problems. We wish to solve the Schrodinger equation,

0wt
ih T = H(r, t)‘P(r, t)

for the case where, H(r,t) = Hy(r) + H'(r,t). We assume that the eigenfunctions u, (1) of H,(r) are
known and expand the wave function W(r, t) as a linear combination of these

W(r, o) = Z (D) (r)exp (— iEyt/R)
K
where the expansion coefficients c¢; have been defined so as to exclude the factors exp (— iEt/h), as this

simplifies  the ensuing argument. Substituting H(r,t) = Hy(r) + H'(r,t) and W(r,t) =
Yk ck(Ou, (r)exp (— iE,t/h) in the Schrodinger equation,

lhz (— - lwkck) uy exp(—iwgt) = Z[ckhwkuk exp(—iwyt) + ¢, H'uy exp(—iwt)]

where, w;, = Ek/h

. ack 344 .
. Z (lhg —c H )uk exp(—iwgt) =0
K

We now multiply the above equation by the complex conjugate of one of the unperturbed eigenfunctions,
Uy, and integrate over all space to get

oc ~
lha_;nexp(_l(l)mt) - Z Ck (um|H’|uk> exp[l(wm — wk)t] =0
k

That is,
dcy,

el EZ ck Hpnge exp(iwpmyct)

where, Ay = (| A’ [ug) and @y = @y — wy. Everything we have done so far is exact, but we now apply
perturbation techniques in a similar manner to that described for the time-independent case. We introduce
a constant /3, replace H' by SH’ and expand the constants c; in a perturbation series
Ck = Cro + Bek1 + Bz +
Therefore,
dcy,

Fr EZR: ¢ Hpi exp(iwpyt)

with the use of the above perturbation series becomes,
d 1 ~, )
E(Cmo + Bems + BPCmp + ) = EZ(Q{O + Begy + BPerz + ) PHpp exp(iwpyt)

k
dc dac 1 .
or, m0+ﬁ ml =—pf E Cro Hyg exp(i@pmit) +
at ih -

where only the terms having the zeroth and the first powers of § have been retained. Equating the
coefficients of the zeroth and the first powers of § we have,
dCmo

ot

and
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(G JoM | . ]
61: = EZR: Cro Himp exp(iwmyt)

Thus, we have, dc,,o/dt = 0, with the coefficients ¢, are constant in time, which is to be expected as the
zero-order Hamiltonian is time independent, and

ale 1 =7 . " 1 tA, .
Frae EZ Cro Hip exp(iwmit) , where we define ¢, = EZ Cro | Hpp exp(iwmt) dt
0
K K

We are particularly interested in the case where the system is known to be in a particular eigenstate — say,
that represented by u,, —at thetimet = O sothatc,p = 1,and ¢y = 0, k # n.

1 t"n .
“Cm1 = m‘[ Hypp exp(iwppt) dt
0
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We are partlcularly mterested in the case where the system is known to be in a particular eigenstate — say,
that represented by u,, —at the time t = 0 so that ¢, = 1,and cg = 0, k # n.

1t
“Cm1 = Ef Hypn exp(iwppt) dt
0

Remembering that ¢, = 0 (iIn # n) we see that the probability of finding the system in a state represented
by u,, wherem # n is given by |c,,1|?, provided that ¢,y is small enough for the perturbation approximation
to hold.

However, from

de, 1 —, ) 1 ) ~,
— = .—Z cx Hip exp(iwpyt) = .—Z cx expli(Em — Ex) t/h] (um|H' |uk)
dt ih - ih -

one might proceed as follows: Let us suppose that the perturbation H'(r,t) was applied at time t = 0, and
that before the perturbation was applied, the system was in the stationary state n with energy E,,. The state
at t = 0 is hence, W(r,t) = exp(— iE,t/h) u,(r), and the t = 0 values of the expansion coefficients in
Y(r,t) = Y e (Ou,(r)exp (— iExt/h) are thus ¢, (0) =1 and ¢, (0) =0, for k #n: ¢, (0) = 5y
Assume: the perturbation H'(r,t) acts for only a short time. The change in the expansion coefficients c;,
from their initial values at the time the perturbation is applied will be small.

To a good approximation, we can replace the expansion coefficients on the right side of

de 1 P . 1 . iy’
e EZ Cx Hip exp(iwpyet) = EZ cx expli(Em — Ex) t/R] (um|H' |uk)

k
by their initial values ¢, (0) = 8yy,.
Therefore, the form

de 1 P . 1 . iy’
e EZ Cx Hip exp(iwpyet) = EZ cx expli(Em — Ex) t/R] (um|H' |uk)

k
with the coefficients substituted by their initial values ¢, (0) = &, become,
de, 1 ) ~, 1 ) —,
W = mexp(lwmnt) Hmn = Eexp[l(Em - En) t/h] (um|H |un)
Let the perturbation H' actfromt = 0 to t = t’. So, integrating fromt = 0 to t = t’, and using c; (0) = 8y,


https://meet.google.com/beq-bejw-vqz

PG SEMESTER-I11 2024-2025 (PHYSICAL CHEMISTRY SPECIALIZATION) / CEM 302 / UNIT-3

GOOGLE MEET LINK: https://meet.google. com/crp bhxx-vmv (CLASS-16, 14/10/2024)

cm(t") — ¢y (0) = f expli(E,, — E,) t/h] (um|ﬁ’|un> dt

which becomes
t!

1 ~
cm(t) = 6 + ﬁf expli(Em — Ep) t/h] (um|H' |u,) dt
0
Use of the above approximate result for the expansion coefficients in

W(r,t) = Z o (Oue (P exp (= iEt/h)
k
gives the desired approximation to the state function at time t’ for the case that the time-dependent
perturbation H' is applied at t = 0 to a system in stationary state n. For times after t’, the perturbation has
ceased to act, and H' = 0. Therefore,

dc
d;n thck ke exp(iwmpt) = hchexp[L(E — Ep) t/ ] (um |H' [uy)

gives dc,,/dt =0 for t > t', so ¢y (t) = ¢, (t") for t > t'. Therefore, for times after exposure to the
perturbation, the state function is

Y(rt) = Z Cm (U (r)exp (— iE,t/h) fort >t
m
where ¢, (t") is given by
t,
1 _ _
Ef expli(Em — En) t/ ] (um|H'|u,) dt
0

Cm(t’) = Omn +

Note that, in the above expression for
Y(r,t) = Z cm (DU (r)exp (—iE,,t/h) fort > t'

m
Y(r,t) is a superposition of the eigenfunctions u,,(r) of the energy operator H,(r), the expansion
coefficients being ¢, (t")exp (— iE,,t/h). A measurement of the system’s energy at a time after t will give
one of the eigenvalues E,,, of the operator H,(r), and the probability of getting E,,, equals the square of the
absolute value of the expansion coefficient that multiplies u,, (r).

A measurement of the system’s energy at a time after t" will give one of the eigenvalues E,, of the operator
H,y(r), and the probability of getting E,,, equals the square of the absolute value of the expansion coefficient
that multiplies u,, (). Therefore, this probability becomes,
lem (£ exp(— iEpt/R)1? = lep (¢
The time-dependent perturbation changes the system’s state function from
Y(r,t) = u,(r)exp (—iE,t/h)
to the superposition

W(r, o) = z e () (Pexp (— iEy,t/R) fort > t.

m
Measurement of the energy then changes W(r,t) to one of the energy-eigenfunctions
Uy, (r)exp (—iE,,t/h). The net result is a transition from stationary state n to stationary state m, the
probability of such a transition being |c,, (t')|?.

4. Interaction of Radiation and Matter: Towards Spectroscopy

We now consider the interaction of an atom/molecule with electromagnetic radiation. A proper quantum-
mechanical approach would treat both the atom and the radiation quantum mechanically, but we shall
simplify things by using the classical picture of the light as an electromagnetic wave of oscillating electric and
magnetic fields. Thus, traditional spectroscopy is semi-classical. Usually, the interaction between the
radiation’s magnetic field and the atom’s/molecule’s charges is much weaker than the interaction between
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the radiation’s electric field and the charges, so we shall consider only the latter interaction. Say, £ is the

electric field (the magnitude, or the scalar part only of the actual field, 5) associated with the electromagnetic
radiation = a plane-polarized radiation. The electric field is defined as the force per unit charge, so the force
on charge Q; is F = Q;€, = —dV /dx. Integration leads to: V = —Q;€,x, potential energy of interaction
between the radiation’s electric field and the charge (where the integration constant has been scaled to
zero). For a system that has several charges, V = — }}; Q; x;&,. This potential energy of interaction between
the radiation’s electric field and several charges V = — Y'; Q; x;&, is the time-dependent perturbation, H' (t).
The space and time dependence of the electric field of an electromagnetic wave traveling in the z direction
with wavelength A and frequency v is given by €, = &, sin(2nvt — 2mz/ 1), where &, (the amplitude) is the
maximum value of &,..

~H () ==&, Z Q; x; sin(2mvt — 2mz; /1)

l
The summation in the above expression runs over all the electrons and nuclei of the atom or molecule.
We define: w = 2mv, the angular/circular frequency, k = 2m/A, the wave number, and wp, =

(Em - n)/h-
S () = €, Z 0; x; sin(wt — kz,)
i
We recall that,
tl

Cm(t) = 8y + f expli(Em — Ep) t/R] (up|H'|uy,) dt
0

1
ih
Therefore, from

q () =-¢&, Z Q; x; sin(wt — kz;)
i

and,
1 ‘
cm () = S + Ef exp(iwmnt) (um|ﬁ’|un) dt
0
we write,

t,
i€
Cm(t,) ~ 6mn + Tof exp(iwmnt) (uml Zi Qi Xi Sin(wt - kZi) |un)dt
0

Note that, the integral (u,,| Y; Q; x; sin(wt — kz;) |u,) is over all space, but significant contributions to its
magnitude come only from regions where u,, and u,, are of significant magnitude. In regions well outside
the atom/molecule, u,,, and u,, are vanishingly small, and such regions can be ignored. Let the origin of the
coordinate system be chosen within the atom/molecule. Since regions well outside the atom can be ignored,
the coordinate z; can be considered to have a maximum magnitude of the order of one nm. For ultraviolet
light, the wavelength 1 is on the order of 102 nm. For visible, infrared, microwave, and radiofrequency
radiation, A is even larger.

~ kz; = 2mz; /A is very small and can be neglected.

z Q; x; sin(wt — kz;) = z Q; x; sin wt
{ i

Now, note that, since,
elf — g0 _cosB +isinf — [cos(—0) + isin(—0)] cosf +isin® —(cosO —isinO)
20 B 2i

; =sin@
i
hence, sinwt = (e'®t — e~'*) /2i. Therefore,
!

t
i€
n(t") % S + 52 [ XD (itomn) G| 1 Qe 3 sint — k) )i
0

becomes,
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t’

E ) .
En(t") = Sun + 5 (U] i Qs il f [ei@m+@t _ giwm-w)t]qt
0

We note that,

tl
t 1 t’
et dt = —(e“ - 1),
a
0
and using this result, we get,

&o e
t, ~ 6 . . .Y -
cm(t") mn t o) (| i Qi xilun) [ i(Wmn + ) (wmp — w)

Form # n, 8, = 0. We know, |c,,(t")|? gives the probability of a transition to state m from state n. There
are two cases where this probability becomes of significant magnitude. We now explore these two cases in
details.

i(Wmptw)t’ _ 1 ei((umn—(u)t' -1

Casel: W, = w
If wymn = w, the denominator of the second fraction in brackets is zero and this fraction’s absolute value is
large, but not infinite. This is so because of the I’'Hopital’s rule:
ei(wmn_w)t’ -1 ) ,
lim _ = lim_ it'e!@mn=® /] = j¢’

(Wmn—w)—0 l(wmn —w) (wmn—w)—0
For Wy, = w, [recall, w = 2nv, and wy,, = (E,, — E) /1], E,, — E;, = hv. Exposure of the atom/molecule
to radiation of frequency v has produced a transition from stationary state n to stationary state m, where
(since v is positive) E,,, > E,,. We might suppose that the energy for this transition came from the system’s
absorption of a photon of energy hv. This supposition is confirmed by a fully quantum-mechanical treatment
(called quantum field theory) in which the radiation is treated quantum mechanically rather than classically.
We have absorption of radiation with a consequent increase in the system’s energy.

Case2: Wy, = —W

For w,;,, = —w, we get E,, — E,,, = hv. Exposure to radiation of frequency v has induced a transition from
stationary state n to stationary state m, where (since v is positive) E,, > E,,,. The system has gone to a lower
energy level, and a quantum field theory treatment shows that a photon of energy hv is emitted in this
process. This is stimulated emission of radiation. Stimulated emission occurs in lasers.

There is a defect in our treatment — it does not predict spontaneous emission.

Spontaneous emission: the emission of a photon by a system not exposed to radiation, the system falling to
a lower energy level in the process. Quantum field theory does predict spontaneous emission. Note that,
from

i(Wmnto)t’ _ 1 ei(wmn—w)t' -1

! 80 ¢
cm(t") % Sn + 5 (| X Qi Xilun) [ i(@Wnn + @) (W — @)

we can say that, that the probability of absorption, |c,,, (t")|?, is proportional to |[(u,,| ¥; Q; x;|u,)|?.
The quantity, ; Q; x; is the x component of the system’s electric dipole moment operator, fi, which is given
by

n= izQixi‘l'jZQiyi"'kZQizi = i, +jiy + ki,
7 7 7

i,j, k are unit vectors along the axes and i, [, fi, are the components of fi. We assumed polarized radiation
with an electric field in the x direction only. If the radiation has electric-field components in the y and z
directions also, then the probability of absorption will be proportional to
A \ 2 \ ~
|(um|ﬂx|un>|2 + |<um|.uy un)l + |<um|.uz|un>|2 = |<um|ﬂ|un)|2
The above relation holds true since

4] = (A2 + A2 + 42)"/?
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for a vector A. The integral, (W, |l|u,) = Wmn is called the transition (dipole) moment (integral). When
Hmn = 0, the transition between states m and n with absorption or emission of radiation is said to be
forbidden. Allowed transitions have u,,,, # 0. Because of approximations made in the derivation of
i(Wmnto)t’ _ 1 ei(wmn—w)t' -1

! 80 ¢
cm(t) = Spn + ﬁ(uml 2 Qi xilun) [ (W +©) (W — ©)

forbidden transitions may have some small probability of occurring.
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Application to a two-level system

Let us think of an atom/molecule, which, for simplicity, we will treat as a two-level system to maintain a
simplicity of our formal treatment. The system is initially isolated (no interatomic/intermolecular
interactions), and is kept in the dark (no interaction with light/electromagnetic waves). Such an initial state
of the system is defined well by the zeroth-order/unperturbed Hamiltonian H, and satisfies the Schrodinger
equation

9 _
ma—lf =Hyyp €]

The solutions of the above equation are the stationary states

l/)n(f): t) = ¢n (F)e_iEnt/h
such that, Hy¢,, () = E, ¢, (¥"), with the property that
Un (7, 0P, (7, 1) = ¢ (PeEnt/hp, (P e Ent/h = ¢ (F) () = |9 (F )17 = |9y (P2
Now let us consider the interaction of this system with light/electromagnetic radiation (of optical range, UV
to IR, with the wavelength spanning from ~103A to ~107A), having an electric field €anda magnetic field
B. Since the interaction of the atomic/molecular electrons with €ismuch stronger than all other interactions,
we take into consideration this interaction only, and treat all others as hyperfine interactions. A typical
molecule has a dimension of a few A. Hence, for all practical purposes, light is assumed to be homogeneous
in every part of the molecule. For a monochromatic light of frequency v,
€ = €, cos(2mvt) = €, cos wt
The electrons of the atom/molecule interact with € of light along the direction of £ Say, f(7,t) is the
electrical potential of the electric field at a point 7 in space. Hence, f (7, t) is given by the scalar product

f# ) =—7-€
If V (7, t) is the potential energy of interaction of a point charge q with the electric field §, then

V#E Y = qf 7,0

However, our system is essentially a system of such point charges (electrons), and
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V(rt)—quﬁ(rt)—qu(—r €)=- qu €=- ZML

Hence, for our treatment, the light source acts as the perturbatlon and the correspondmg perturbation

potential has the form V(#,t) = —ji - €. We assume that we switch on the light source (perturbation) att =
0, and that V (7, t) acts as a small perturbation, so that the time-dependent perturbation theory is applicable.
Therefore, at all times t = 0, the Hamiltonian for the system becomes
A=H,+V@#t)att>0

We also recall that; the unperturbed system is defined by (1) in a manner such that Hy¢,,(¥) = E, ¢,,(#*) and
the stationary states are given by ¥, (7%, t) = ¢, (F)eEnt/"_Our system has an infinite number of stationary
states, and {¢,,(7)} spans a complete orthonormal set of functions. To preserve the simplicity of our
derivation, we assume that our molecule has only two stationary states, 1, (7, t) and ¥, (7, t), such that,

P17 t) = ¢1(T)e_lE1t/h P, (7,1) = ¢ (F)e E2t/h
¢, () and ¢, (#) are the eigenfunctions of H,. We solve

oY
lhE = Hl/)

Does the Schrodinger equation get satisfied with H, and the above forms of ¥ (#,t) and 1, (7, t)?
Let us check with 1, (7, t), where ¥, (7, t) = ¢, (e E1t/" Hence,

d . . .
ih—¢1(7)e_LE1t/h = Hyp, (P e HEnt/h

iE;
- LHS = ih¢, (7F)e~Eat/h (——) E; ¢, (e Ert/h and RHS = E; ¢, (e Eat/h

h
= LHS = RHS
One may verify with ¢, (#) in the same manner.

Say, the system is initially (at t = 0) in state ;. Hence, the initial state wavefunction for the system is given
by ¥, (7, t). At t = 0, the light source is switched on. For any time t = 0, ¥, (7, t) is not an eigenfunction of
H. Say, att = 0, the wavefunction has the form

Y@ t) = a (OY1(F, ) + a(OP, (7, t) ) )
where a; and a, are the combining coefficients and are functions of t only, while 14, ¥, and V are functions
of both space and time. We note that, any a; (t)a;(t) = |a;(t)|? gives the probability of finding the system
in any state i.

a —~ —~ o~ A~ ~ g
iha—l/: =HyY,H=Hy+V(@#@1t),V({#t)=—[-Eatt =0
With the wavefunction defined by (2), substitution in the Schrédinger equation gives,

a o
hoolai @O 0) + ax (Y2 (7 0] = [Hy + V(7 O)]la; 91 (7 1) + az (DY, (7, D]

. [das 0y, da, Y, 7~ P 7~ S
or,ih [E'l’l ta;— - T +— dt Y, + Q2o | = aHopy +Vays + ayHop, + Vayih, 3)
Now,
lc')t = Hoy1 (7, 1) g 26t = Hop, (7, 1)
an
0P, (7,1) - S 0P, (7, 1) ~ 5
allhT = alHolpl (T, t) < azlhT = azHolpz(r, t)
From (3),
., day Y, da, ., 0y o~ - pe -
lhﬁlpl + allfl? + Lh 1/)2 + azlha— = a,Hypy + Va1 + a,Hopy + Va,,

da; d
or, lh ¢1 +aHopy + lh 1/’2 + a,Hyp, = a;Hyy + Vayy + a,Hop, + Vayyp,
d da,
or, Lh 1/)1 + Lh 1/)2 = Va11/J1 + Vazl/JZ

. da2
or, ih [E Y, + 1/’2] Vaypy + Vayp,
Left multiplication of the above equation by ¢ (r) followed by an integration over all space gives
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da1

da ~ .
[ osaav+ T2 [ gswadv=a [ 6370, av +; [ 9370, v

d . d .
or,ih 3 [ sie it/ v+ in 2 [ pipoe=tEMav

= a1j¢§‘7¢1e_“51t/h dv+azj¢;V¢ze—iEzt/h dv

da . da . ) . . R
or, ihd—tle_lElt/h(¢2|¢1) + ihd—;e_LEzt/h(¢2|¢2) = a1e_lElt/h<¢2|V|¢1) + aze_lEZt/h((l)lel‘l’z) (4)

Note that, (¢,|¢,) = 0 and (¢,|¢p,) = 1, since any ¢; is an eigenfunction of the unperturbed Hamiltonian
and the set of functions {¢,,} forms an orthonormal set. From (4), we therefore have,

da, _, - p ' v
ih—Le Bt/ = 0, ey | V] 1) + ape B/ | 7] )
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Application to a two-level system

Let us think of an atom/molecule, which, for simplicity, we will treat as a two-level system to maintain a
simplicity of our formal treatment. The system is initially isolated (no interatomic/intermolecular
interactions), and is kept in the dark (no interaction with light/electromagnetic waves). Such an initial state
of the system is defined well by the zeroth-order/unperturbed Hamiltonian H, and satisfies the Schrodinger
equation

lh%—lp = Hyp (7.1)

The solutions of the above equation are the stationary states
l/)n(f)’ t) = ¢p (?)e_iEnt/h
such that, Hy¢,, () = E, ¢, (¥), with the property that
Un (7, 0P, (7, 1) = ¢ (PeEnt/hp, (Fe ™ Ent/h = ¢ (F) gy (7F) = |9 (7 )17 = |9y (P2
Now let us consider the interaction of this system with light/electromagnetic radiation (of optical range, UV
to IR, with the wavelength spanning from ~103A to ~107A), having an electric field €anda magnetic field
B. Since the interaction of the atomic/molecular electrons with €ismuch stronger than all other interactions,
we take into consideration this interaction only, and treat all others as hyperfine interactions. A typical
molecule has a dimension of a few A. Hence, for all practical purposes, light is assumed to be homogeneous
in every part of the molecule. For a monochromatic light of frequency v,
€ = €, cos(2mvt) = €, cos wt

The electrons of the atom/molecule interact with € of light along the direction of £ Say, f(7,t) is the
electrical potential of the electric field at a point #* in space. Hence, f(#,t) is given by the scalar product

f# ) =—7-€
If V (7, t) is the potential energy of interaction of a point charge q with the electric field §, then

V(@ t) = qf (7, t)

However, our system is essentially a system of such point charges (electrons), and

V(rt)—zczlfl(rt)—zczl(—r €) =- qu €=- Zul

Hence, for our treatment, the light source acts as the perturbatlon and the correspondlng perturbation
potential has the form V(#,t) = —ji - €. We assume that we switch on the light source (perturbation) at t =
0, and that V (7, t) acts as a small perturbation, so that the time-dependent perturbation theory is applicable.
Therefore, at all times t = 0, the Hamiltonian for the system becomes

H=Hy+V@#t)att>0
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We also recall that; the unperturbed system is defined by (7.1) in a manner such that Hy¢,,(¥) = E,¢,,(7)

and the stationary states are given by ¥, (% t) = ¢, (F)e Ent/" Qur system has an infinite number of

stationary states, and {¢,,(7)} spans a complete orthonormal set of functions. To preserve the simplicity of

our derivation, we assume that our molecule has only two stationary states, ¥, (7, t) and ¥, (7, t), such that,
P17 1) = pe (e Eat/Mah, (7, 0) = ¢y (F)e~Eet/M

¢, () and ¢, (#) are the eigenfunctions of H,. We solve

i
—=f
ih 3t P

Does the Schrodinger equation get satisfied with H, and the above forms of ¥, (#,t) and 1, (7, t)?
Let us check with Y, (7, t), where 1,[)1(? t) = ¢, (e E1t/m Hence,

lh ¢ (r)e—lElt/fl HO¢ (r)e iEqt/h

iE;
Lm—m@Mrﬁmﬂwﬁ Eyy(PeF1t/h and RHS = B, by (F)e 51t/

h
= LHS = RHS
One may verify with ¢, (#) in the same manner.

Say, the system is initially (at £ = 0) in state 1;. Hence, the initial state wavefunction for the system is given
by ¥, (7, t). At t = 0, the light source is switched on. For any time t = 0, Y (#, t) is not an eigenfunction of
H.Say, att > 0, the wavefunction has the form

YA t) = a; (P (F t) + ax(OP, (7, 1) ) (7.2)
where a; and a, are the combining coefficients and are functions of t only, while Y1, ¥, and I/ are functions
of both space and time. We note that, any a; (t)a;(t) = |a;(t)|? gives the probability of finding the system
in any state i.

a — —~ o~ A~ ~ =g
iha—lszlp,H =H,+ V@0, V({F ) =—ji-Eatt >0

With the wavefunction defined by (7.2), substitution in the Schrédinger equation gives,

a o
hoolai @O 0) + ax (0P (7 0] = [Hy + V(7 O)][la; 91 (7 1) + az (DY, (7, D]
61,[)1 da; oY,

rda _ . —~ .
or,ih [d_tlwl ta wra +— dt Y, +a 2= a;Hoy +Var g + axHopr + Vazih, (7.3)
Now,
37!)(”) a o s .allJ(Tt) 5o oa
—o— = Hou (1) R
an
0y, (7, 1) a2 L 0P, (7, 0) a4 ra
allhla—t = alHoll]l (T, t) A azlhza—t = azHolpz(r, t)

From (7.3),

day 0P, 0y, . . ~ ~

lfl—l/)l + allha— + lh 1/)2 +a,ih—— Frale = a,Hypy + Va1 + a,Hop, + Va,,

d d
or, lh El’l +aHopy + lh—ll’z + aHyp, = a;Hypy + Vayy + a,Hop, + Vayyp,
) da1 da,
or, lhﬁlpl +1 _1/12 = Vayp, + Vayip,

_rdaq daz
or, ih [E Py + 1/’2] Vayp, +Vayp,
Left multiplication of the above equation by ¢5 (r) followed by an integration over all space gives

da1 * . daz " P o
lhEJ ¢2¢1 dv + lh—J (I)ZIPZ dv = a1J¢ZV7~/)1 dv + a, J ¢2V‘L/j2 dv
or, lh f‘l’ b1 e_lElt/hdv+Lh—f¢ Ppe”Bt/h gy

= aquszqble“Elt/h dv +a2J¢ZV¢2e“E2t/h dv
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da; . da, . . _ . R
or, ihd_;e_lElt/h(¢2|¢1) + ihd_tze_lEzt/h((l’sz) = a e BN, |V|d1) + aze T E/ M, |V|p,) (7.4)

Note that, (¢,|¢p,) = 0 and (¢,|¢p,) = 1, since any ¢; is an eigenfunction of the unperturbed Hamiltonian
and the set of functions {¢,, } forms an orthonormal set. From (7.4), we therefore have,
da . . _ ) ~
ihd_tze—uszt/h — ale—LElt/h<¢2|V|¢1> + aze—lEzt/h<¢2|V|¢2>
Since the system was initially in the state ¥;, a;(t = 0) = a;(0) = 1 and a,(t = 0) = a,(0) = 0. Also, as
the perturbation is small, the values of a; and a, at any time t = 0 do not differ much from their values at
t = 0 (when there was no perturbation).
da,

IR = BN g, 7 py) with D7) = —ji - E
da . o
or, ifld—tz = —e! (2 EDM | i - €|y )
da , o
or, ihd_tz = —e'E"Et/A(¢, | i - €, cos(2mvt) |q)
da . o
or, ihd—tz = —e!E=EDt/R co5(2mvt) (¢, |id - Eo|d1)
Let us consider the z-component of the electric field only, so that
da .
ih—= = —e! 2= cos(2nvt) (2 |z €0z 1b1)
For a constant electric field, €, is a constant, and may be taken out of the integral, giving
da,

ih—2 = —elE=E)Y/ R cos(2mve) €0, (ol bn)

Say, we define (¢, |1, 1) = (1,)21, the transition dipole moment integral for the transition 1 — 2.
da,

ihg = —elE2"EDt/ co5(2mvt) 4, (hy) 21 (7.5)

=cos@ +isinfande " = cosf —isinb, so that, e + e~ = 2 cos¥.

1, . .
scosl = E(e‘g + e"(’)

Now, el®

From (7.5), we have

ih% - _%(Mz)mgoZ(eiznw + e i2mvt) (B ~E)t/h
ih% - _%(Mz)mgoZ(eiznw + e i2mvt) (B ~E)t/h
or, ih% - _%(#Z)Zlgoz(eihvt/h + = iRVE/R) By =)/
or, ih% = —%(Hz)2150z[eXp{i(E2 — E1 + hv)t/h} + exp{i(E, — E; — hv)t/h}]

1
or, ihdaz = _E (uZ)Zlg()Z[eXp{i(EZ - El + hV)t/h} + eXp{i(Ez - El - hV)t/h}]dt
Integrating from 0 to t’,
1 exp{i(E, — E; + hw)t/h}  expli(E, — E; — hv)t/h} ‘
ih t') — 0O))=—-= E
l [aZ( ) aZ( )] 2 (:uZ)Zl OZ[ l(EZ _ E1 + hV)/h + l(Ez _ E1 _ hV)/h
Now, a,(0) = a,(t = 0) = 0, since the system was initially in the state 1.

(h) [exp{i(Ez —E; + hv)t/h} N exp{i(E, — E; — hv)t/h} ¢

0

1
wihay (t) = — = (Ug)21€02

2 E, —E; +hv E,—E, —hv 0
) 1 ()0n [exp{i(Ez —E; + hv)t/h} N exp{i(E, — E; — hv)t/h} ¢
Or, a; =5 WHz)21¢02
2 E, —E; + hv E;, —E; —hv 0

exp{i(E, — E; + hv)t'/h} —1 N exp{i(E, —E; —hv)t'/h}—1 7.6)
E,—E, +hv E, —E, —hv ’

1
or,a,(t') = 5 (Uz)21 07 [
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The transition 1 — 2 takes place only when E, — E; = hv (the Bohr frequency condition, or the resonance
condition, in spectroscopy). Under this condition, the second term within the square brackets on the RHS of
(7.6) is the dominant term, and is in magnitude much larger as compared to the other term.
1 exp{i(E, —E; —h)t'/h} —1
t" ~ = &
a(t’) ) (z)21 Oz[ E, — B, — hv
, 1 lexp{i(E, — E; — hv)t'/h} — 1|?
or, |a,(t )? = _(.Uz)%lggz 2
4 (E, —E; — hv)
Now, |a,(t')|? gives the probability of finding the system in the state 2 as a result of the transition 1 — 2.
Now, to simplify (7.7), we use the following identity.

et — 1> = (e — 1) (e — 1) = (7 — 1)(e®® — 1) = (1 — ) (1 — e~¥)
or,|ei6 —1|2 =1-e 0 —e®+1= 2—(ei9 +e‘i9) =2—2cosf =2(1—cos0)
or,|e® —1)" = 2 x 2sin2(0/2) = 4sin(0/2)

(7.7)

Hence, from (7.7), we have

1 4sin?[(E, — E; — hv)t'/2A] sin®[(E, — E; — hv)t'/2A]
N2 ~ Z 2 ¢2 — 2 ¢2
la, (t")] ) (12)21€02 (B, — E; — hv)? (12)21€02 (E, — E, — hv)?

We will use (7.8), or one of its more general forms, to understand the intensities of spectroscopic transitions.

(7.8)
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From our previous discussions, we have seen that
) 1 4sin?[(E, — E; — hv)t'/2A]
lax ()I* = — (u,)51€85, 2
4 (E, —E; — hv)
We may simplify the above expression to get

s
aa ()2 = ()3 (Eqp/m? S0 Z V2] e ) = (alislbe)
(wy1 — w)

We recall that the integral (u;),; = (¢p,|u,|¢,) appears from the integral over the perturbation, as
emphasized in our earlier discussions. Now, generalizing |a, (t')|? for any arbitrary situation,

| INI2 ~ Sg H 2 Sinz[(wmn - (‘))tl/z] _ Eg Sil‘lz [(wmn - w)t’/Z]

em(EOF = g e =) 302 (@ — )/21
lc,n (t)]? is the probability that the system is in the state |m) as a consequence of the n — m transition.
Before we proceed further, let us recall a few things that we have already seen, and think over what we have
done so far:
(a) The treatment is able to explain stimulated absorption (W, = ®).
(b) The treatment accounts for stimulated emission (w,,, = —w) as well.
(c) The method adopted by us somehow fails to account for the crucial spontaneous emission.
(d) For the treatment done so far, we have considered a plane polarized radiation whose electric field

oscillates along the x direction.

Should we invoke the photon concept, within our description, and make an attempt to explain the
phenomenon of spontaneous emission? Yes.

sin?[(E, — E; — hv)t'/2A]
(B, —E; — hv)?

= (Mz)%lggz

|Hppn |2

To invoke the photon concept of radiation, we will perform certain necessary changes to the relation for the
probability of absorption, |c,,(t")|?,

5 Sin?[(Wpn — @)t /2] €2 (|Hppn|\* sin?[(wmn — @)t'/2
e = o 22 O 2] 58 (il i o — 2

4h? [((Wmn —@)/212 4\ [(Wmn — w)/2]2
We recall that, wy,, = 27V, and w = 2wy, so that,
sin?[(Wppn — 0)t'/2]  sin?[m(Vpy, —v)t']
[(Wmpn — w)/2]? 412 (Vi — v)?

ale, (ED)? ~
lem (E)] 4\ h A2 (Vppy — V)2 h A2 (Vppy — V)2
If p(v) is the energy density of the radiation field (in units of energy per m3), it can be shown that,
€
pv) =€,
where, €, is the permittivity of free space. However, we note that in our treatment we have considered a
radiation that is x-polarized and the direction of propagation is along the z axis. Thus, in our case, the energy

density of the radiation field is, p,(v) = €,€3/2.
Therefore, from,

S_g <|Hr,nn|>2 4 Sin2 [T[(an - V)t’] — <£0|Hrlnn|>2 Sinz [T[(an - V)t,]

2 .
EolH; Sin? [T (Vi — VT
ol mn|> [ Vmn )t] and p,(v) = €,€5/2

h A2 (Vypy — V)?

lem ()12 z(

we have,

leg, (8|2 ~ 2p,(v) (lHrlnn|>2 sin? [T (Vinn — V)t']
m €o h A2 (Vpy — V)2

We have just said that we have included a subscript z on the radiation density, to designate that this is the

electromagnetic energy density associated with the fraction of the photons moving in the z direction. For a

volume in which the distribution of radiation is isotropic, the density associated with light waves propagating

forward or backward in any one of the three Cartesian directions is one-third the total radiation density, so

that

1
pz(v) = 2p ().
Therefore, in terms of p(v), we have,
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| NIZ ZP(V)lHrInnlz sin? [T (Vimn —v)t']
em(E)I ~ 3eyh? 412 (Vypy — V)2

We now introduce a variable transformation, x = m(v,,,, — v)t’, on

Zp(v)lHrlnnlz Sinz [T[(an - V)t’]

cm()]? = :
lem (E)] 3e h? 412 (Vppy — V)2
to obtain,
2 .
e ()2 ~ t"“p(v)|Hyyp|? sin? x
m 6€eoh? x2
sin(x)zlx2
1
0.8¢
0.6¢
0.4r
0.2¢
—%0 -10 0 10 20
X

The function is sharply peaked at x = 0. The important contribution is limited to —m < x < 7. Once t’ is
larger than 1/|v,,, — Vv, then |c,,,(t")]|? will be quite small. At times longer than this limit, only light of
frequency v = v,;,,, will make any contribution to transferring population from state n to state m. This leads
to the statement, first postulated by Bohr in his model of the H atom, that an atom will undergo a transition
from level n to level m only when exposed to frequency of v = (E,,, — E;;)/h. However, at very short times,
absorption can occur over a small, but finite, range of frequencies centered about v = v,;;;,. We now
integrate the expression for |c,,, (t')|? over all frequencies, and represent it as, {|c,, (t')|?).

tllerlnnlzf p(V)Sinzxd
6¢€yh? x? v

Alem(EDN?) =
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We now integrate the expression for |c,, (t")|? over all frequencies, and represent it as, {|c,, (t')|?). This will
give the total contribution of the radiation field of density p(v) to population transfer into state m.

[o0]

2 .
lem(e1t) = S [ pWsin’x
m 660h2 x2
0
We know that, x = TV, — V)t = Tvpt’ — mvt’, so that, dx = —mt'dv.
2 @ . 2 (o0} .
“Alc (f')|2) _ t’ |H7’nn|2f p(v)SIandv _ ¢ |Hr,nn|2f p(v)smzxidx
" 6¢eyh? x2 6€,h? 22 o
0
Note that: When v - 0, x = mv,,,t’ and when v — o0, x > —oo.
—oo0
t'|Hpn | p(v)sin? x
2\ — mn
or, <|Cm(t,)| ) - _W f x—zdx
TVmnt'
Thus, we have,
—0oo
' |Hppn 2 y)sin? x
lem(e)[2) = — Dl @IS x
6meyh? , %2
TVmnt

Since typical frequencies v,,,, are very large, we may replace the lower limit of integration by +oo.

L o

(|C (t')|2) _ _ t’lH‘r’nnlz f p(v)sinzxdx _ tllHr’nnlz ] P(V)Sinzxdx
" 6meyh? x?2 61eyh? 2
400 e

We further assume that the photon density is constant over the range sampled by the integral, so that,
p(v) = p(v =vpn) = p(Vimn), then, we can take the density out from the integral, to get
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+00
(em (t)]?) = t,p(vmn)lHrlnnlz f sin? xdx _ t’p(vmn)lHr’nnlz
mn 6meyh? J x2 6meyh?
so that,
t'p(Vimn) | Himn | sin? x
"2\ — =
(e (ED%) = be o2 , since, f 22 dx=m

Thus, we have,
<|Cm(t')|2) — t,p(an)lHr,nnlz
6€yh?

The derivative of the population in state m with respect to time is the rate at which the light field populates
level m starting with the system in level n. This rate is proportional to the radiation density at frequency v =
Vmn- The constant of proportionality, called the Einstein B coefficient, is
o il

M 6egh?’
If level m lies higher than level n, then this B coefficient is the rate for stimulated absorption (absorption of
energy stimulated by the electromagnetic field). It is proportional to the square of the matrix element of the
dipole operator between states n and m. Since the absolute value squared of the matrix element of any
physical operator is independent of the order of the initial and final states, it is also clear that the rate of
stimulated absorption (level n to level m) is identical to the rate of stimulated emission (level m to level n).
Let the total number of molecules in levels n and m be N,, and N,,,. The overall rate of stimulated absorption
(energy absorbed per unit time) is

Ny p(Vinn) Bmn
while the overall rate of stimulated emission (energy emitted per unit time) is

Nmp(vnm)Bnm
Obviously, p(Vinn) = p(Vpm). However, equilibrium statistical mechanics demonstrates that the number of
molecules in the lower state must be larger than the number in a higher state. Specifically, at equilibrium

N /Ny = exp(=hvy/kp T).

Since the number of molecules in the lower energy state is greater, the overall rate of stimulated absorption
will be greater than the overall rate of stimulated emission, so that, eventually, the number of molecules in
the two states will equilibrate, which is contrary to the predictions of equilibrium statistical mechanics. To
resolve this paradox, Einstein proposed the existence of another process, spontaneous emission. He
postulated that there exists a small probability for an excited molecule (or atom) to release a photon even
in the absence of an electromagnetic field. The rate of spontaneous emission, which is denoted A,,,,,, will be
thus independent of the energy density of the radiation field. Therefore, the total rate of energy emission
from the upper state is Ny p (Vi) Bum + AnmNm = Non[Anm + 0 Vnm) Bnm]- This must be equal to the
overall rate of energy absorption from the lower state, given by

an(vmn)anr
that is, Ny [Apm + 0 (Vi) Bum] = Nup (Vinn) Bmn, Where we make the notations to make them even more
explicit (to avoid any confusion), and express as, Ny, [Apncm + P Vnem)Brem] = Npp(Vinen)Bmen. The
system we are dealing with is essentially a two-level system with the ground state E,, and an excited state
En. Eq — E, » kgT = thermal energy is insufficient for a n — m transition.

[ —
TRANA N [ Absorption
e, —_—
l,\f\f\} Spontanous
Emission
. s FR Yy
NNN#| Stimulated
m \ Stimulate
NN Emission
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stih[kx)éiu[bx)d.x =

03 Uﬁ,-b)x] [os[(u+b)x] . XSih[(ﬁ-B)x] _ X4 h[(a-tb)x] '
1a-b)t Z(mbF T 2(ah)t 2(a+h)*

-n | [t
(ot = ] i 0] -l

(m-n
mb $0, -h B be 40, M-H'\M
mst be o ol o wnt be an odd wo.

@ Y lam'b;p!pof D[«-ﬂvaq, g woving o & 1D SH0 potesdiol.

X =%)h [ﬁ,, 01) {wm| X |h> = {w]| a+01|n> = {m]aln)y + {m| a"lu)
mi =\ {m|n-1) + Yt {m|nt)

$HO hﬁw{wrlum Qye ovimwy/.ml, (o(|ﬁ>=y

Mm=h-| M= htl
bv) -h=-| O, m-h =t
LAY =
What are the units of Einstein A and B coefficients? Rate of spontaneous emission,

dN,y, (£)
— g = AncmlNm (©)

so that,

1 dN,,(t) 1 1 _1
Apem =— (Nm(t))( T ) w number™" X number - second™ = s,

Thus, spontaneous emission behaves like a first-order process. Similarly, for the stimulated emission, the rate
equation is,

de (t) 1 (de (t))
_ = BremP(Vnem) N (£) = By =_( )
dt n mp( n m) m( nem P(Van)Nm(t) it
1 number
=1"1m3¢2 = N—l —1,~3c—2
" (] -m~3 - second X number) ( second) J7m?s m “m=s

= (kgms ) 'm'm3s72 = mkg~".
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In the same manner, B,,_, » mkg™1. How are the three Einstein coefficients, By, Apcm and By
related? A relationship between these three can be determined in the limit at which the states E,, and E,,
are in thermal equilibrium, in which case neither N,,, nor N,,, evolve/vary in time.
dNp(t)  dNp(t)
“Tat - ar
and p(Vimen) = p(Vnem) = p(v) is the equilibrium spectral radiant energy density. We can assume that
p(v) comes from a thermal blackbody radiation source. Therefore,
8mh v3
p(V) = c3 ehv/kpT _ 1
Under the condition of thermal equilibrium,
N [Ancm + p(Vnem) Brem] = Npp(Vinen) Bnen,

that is,
Nm [Am—m + p(v)Bm—m] = an(V)BTTN—Tl = NmAm—m = p(V) [NTLBTTU—TL - NmBm—m]r
so that,
pV) = I s p(y) =
Nan<—n - NmBn<—m (Nn/Nm)Bnu—n - Bn<—m
From Boltzmann distribution (for a system in equilibrium at temperature T), we have,

N_m — e—(Em—En)/kBT — e—hv/kBT = & — ehv/kBT
n m
- pv) = ——onem
Bm@nehv/kBT — Bhem
The only way that,
8mh v3 Apcm

p(V) = —5 e — and p(v) =

is to have, B,y = Bhem = B and

Bm(_nehv/kBT —Bhcm

A= 8mhy3 B
- dnem T C3
Note that, the A coefficient depends on the cube of the frequency. Spontaneous emission is much more
probable for ultraviolet transitions than for microwave transitions.
It can be shown that,
* the two-level system is unable to achieve a population inversion, while
* for athree-level system a population inversion can be true.
We will return to these issues when we discuss the LASERs. Therefore, we conclude that for any transition
from an initial (i) to a final (f) state, we have,
|Hpn 8mhviny,
i = ——> and Ay, =——5—
6€yh? c3

Bpn  (With By, = Bnm)
Selection Rules: Transitions Within the Same Electronic State

Both the Einstein A and B coefficients depend on the square of the matrix element of the dipole-moment
operator. The dipole-moment operator, fl,, as defined earlier, is used to calculate the transition dipole

integral, (V"mlljxllpn)

Case-1: Electric-dipole selection rules for a particle of charge g in a one-dimensional box.

L
2
liadipn) = [ (5)x5in (5)sin (1)
Note that: ’
f x sin(ax) sin(bx) dx = Cozsgla_—bl;)zx] — Cozsgla-:bl;)zx]

xsin[(a — b)x] xsin[(a + b)x]
2(a—b)?  2(a+Db)?
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cos[(m —n)mx/L] cos[(m + n)mx/L]
o (W | )_2_61 2(m —n)?m2 /L2 2(m + n)?m2 /L2
T AWmIEAYn) =T sin[(m — n)mx /L] xsin[(m + n)mx/L]

20m —n)2m2/12  2(m +n)?mn2/12

Therefore,

L 3 cos[(m + n)mx /L] L

2(m + n)?m?

cos[(m —n)mx/L]
2(m —n)?m2

1 = 2qlL ;
(Wmlix[Pn) = 2q x sin[(m — n)mx/L]

2(m —n)?n?
1
2(m —n)2m?

0
L x sin[(m + n)mx/L]
~ 2(m+n)2n?

L

0
{cos(m —n)mr — 1 + x sin(m — n)w — 0}

(Ymllyxlpn) = 2qL

=3t 2

Note that, all sine terms are zero, irrespective of the values of m and n.

. . _qL 1
Wl n) = 3 [ o (costm = = 1) — s

I = qL ! m-n 1 m+n
or, (Yl fixlYn) = ﬁ[m{(—l)( ) — 1} — m{(—l)( ) — 1}]

{cos(m + n)mr — 1 + x sin(m + n)w — O}J

{cos(m + n)m — 1}]

Thus,
h = _qL _1 m-n 1 n
(Ymllxlhn) = 2 [( Y {(—1)( ) — 1} — m{(—l)(”l ) — 1}]

The first term in the square bracket is non-zero only if (m —n) is odd; the second term is non-vanishing
provided (m + n) is odd. These determine the rules for the spectroscopic transitions for the system.

Case-2: Electric-dipole selection rules for a one-dimensional harmonic oscillator of charge g. We must find

out g(m|X|n). We recall that,
Bo\1/2

= (—) (a+at),

2mw

=

so that,

(m|x|n) = (m|a + aT|n) = (m|a|n) + (m|a*|n) =+vn(mln—1) +Vn+ I{(m|n + 1)
Since, SHO eigenfunctions are orthonormal, either m=n—-1, or m=n+1, that is, m—n = +1.
Therefore, for the 1D SHO, the selection rule will be, Av = +1.
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LASERs are designed to amplify light by the stimulated emission of radiation. For this amplification to occur,
a photon that passes through the sample of atoms must have a greater probability of stimulating emission
from an electronically excited atom than of being absorbed by an atom in its ground state. This condition
requires that the rate of stimulated emission be greater than the rate of absorption, or from
ANy, (1)
dt

= BymP (Vum) N, (t) (stimulated emission only)

and
dNp(t)  dNp(t)
dt ~  dt

= Bynp(Vimn) Ny, (t) (absorption only),

we should have,

Bnmp(vnm)Nm(t) > anp(vmn)Nn(t)-
Now, since, Bym = Bn = B, Apm = 4, and p(Vum) = p(Vimn) = p(v), the stimulated emission can be
more probable than absorption only when, N,,,(t) > N,,(t), or when the population of the excited state is
greater than that of the lower state. Such a situation is called population inversion. Now, from,

Nm/Nn — e—(Em_En)/kBT = e_hvmn/kBT
N,, must be less than N,,, because hv,,,/kgT is a positive quantity. Therefore, a population inversion, for
which, N, (t) > N,(t), is a non-equilibrium situation. Thus, before we can expect light amplification, a
population inversion between the upper and lower levels must be generated. Can we achieve a population
inversion for a two-level system? The rate equation for a non-degenerate two-level system is given by,

3 dN,(t) _ dN,, (1) = Bp(v)N,(t) — AN,,,(t) — Bp(v)N,,,(¢t)

dt

dN,(t) dN,(t)

= ar = BPWIN () = Nip()] — AN (£)

Say, Niotar = Np(t) + Ny, (t), is the total number of particles in the system, which remains constant for a
closed system. We note that N, (t) and N,,, (t) vary with time to keep N¢,¢4; @ constant of time. If we assume

that all the atoms are in the ground state at time t = 0, so that N,;(0) = N;y¢q; and N, (0) = 0, so that, from

or,

ANy, (t)
1 = BPWINL () = Nip ()] = AN ()
we will have, upon substituting N, (t) = N;prqr — Nyn (0),
dN,,
dt(t) = Bp()[Neotar = N (£) = Nin ()] = AN (¢) = Bp (V) [Neotar = 2Nm (£)] = AN, (£)
dN,,
or, dt(t) = Bp(V)N¢otar — 2Bp(V)N,, (t) — AN, (t) = Bp(V)Niprar — [2Bp(v) + A]N,, (1)

dNim (1)

Bp(V)Ntotar — [A + 2Bp(v)INp, ()
For simplicity, let us substitute @ = Bp(V)N¢otq and f = A + 2Bp(v).
dNp (t)
adt =——
a— ﬂNm(t)
Now, say, u = @ — SN, (t), so that, du = —BdN,,(t) = dN,,(t) = —(1/B)du

or,dt =

dt = ———
B u

Integrating both sides of the equation, we get Inu = —ft.

-pt -Bt a 1 -Bt o e Bt
cu=e " S a—fNn(t)=e =>Nm(t)=E—Ee =>Nm(t)=E 1-—
Bp(V)Niorar e—[ZBP(V)+A]t] Nn(t)  Bp(v) e—[ZBp(v)+A]t]

" A+2Bp(v) Bp(V)Neotar Ntotar A+ 2Bp(v) Bp(V)Neorar
When t — oo, e~ [4+2BpWIt _, ) <o that
Np(0)  Bp(v)
Ntota A+ ZBP(V)
Now, if A = 0, there is no spontaneous emission. Hence,
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Npp(0) 1
Ntotal 2
However, A > 0, always, so that A + 2Bp(v) > Bp(v), and hence
N, (t 1 N, (t 1 1 1
Nn@® 1 M® 1 1 1
Ntotal 2 Nn(t) + Nm(t) 2 Nn(t) +1 2
N N N (2)
t t
n()>1:> m()<1
Ny, (1) Ny (t)

So, the number of atoms in the excited state can never exceed the number of atoms in the ground state.
Thus, a population inversion cannot occur in a two-level system.
< OSfmmmmrenaes

N, (t) |

Ntomt

0.0

t
How does the system relax back to equilibrium once the incident light source is turned off? Once the light
source is turned off, the only pathway by which an excited atom can return to its ground state is by
spontaneous emission. Since under such a situation, p(v) = 0, the rate equation,

D) — Bp N () ~ N (O] — AN (1)
becomes
dNp,(t) — AN (D)
dt me

which, upon integration, gives,

N,,,(t) = N,,,(0)e~4t.
The reciprocal of A is denoted by 7z and is called the fluorescence lifetime or the radiative lifetime. We will
see, that a three-level system can undergo a population inversion and demonstrate lasing.
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A Three-Level System

Each level is once again assumed to be non-degenerate and therefore represents a single state of the system.
Pump light of frequency given by hv;; = E; — E; excites an atom from the ground state (state 1) to state 3.
Once populated, this excited state can relax by spontaneous emission to states 2 or 1 or by stimulated
emission back to the ground state.

Level Energy
3 - E,
Ay, Biyp,(Vys)
2 y * E,

Byipu(vy) Ay Asy

] Y l Y E

“1

Those excited-state atoms that relax by spontaneous emission to state 2 will also undergo spontaneous
emission to state 1. If light of energy hvs, = E3 — E, is incident on the system, absorption and stimulated
emission can occur between the excited states 3 and 2. We will show that under certain conditions, a
population inversion can be achieved between the two excited states (that is, N3 > N,). Such a system
provides a medium for the amplification of light of energy hv;, = E; — E, and is said to be able to lase. The
double-headed arrows indicate that both absorption and stimulated emission occur between the two states.
A single B coefficient is used for absorption and stimulated emission between a set of two states because we
know that B;; = Bj;. Initially, all atoms are in the ground state, so that Ny (0) = N;,¢q;. We consider the case
in which this three-level system is exposed to an incident light beam of spectral radiant energy density,
py(v31) (Where hvs; = E5 — E;), which excites atoms from level 1 to level 3. A light beam such as this one
that is used to create excited-state populations is referred to as a pump source. The pump source is assumed
to have no spectral radiant energy density at hv,, = E, — E;, and as a result no atoms are excited to state
2. Once an atom populates state 3, it can decay by stimulated emission back to state 1 (induced by the pump
source) or by spontaneous emission to either state 2 or state 1. The rates of spontaneous emission to state
2 and state 1 can be different. Thus, we must include subscripts on the A coefficients to indicate explicitly
the two states involved in the transition. An atom that relaxes from state 3 to state 2 can in turn relax back
to the ground state by spontaneous emission.

If light of frequency v3, (hvs, = E; — E5) is available, both absorption and stimulated emission can occur
between states 3 and 2. The pump source is assumed to have no spectral radiant energy density at hv,, =
E, — E;, and as a result no atoms are excited to state 2. Light of this energy is inevitably available because it
is generated by the spontaneous emission process between these two levels. For a three-level system, the
sum of the populations of the individual energy levels is equal to the total number of atoms:
Ntotar = N1 (t) + Np(8) + N3(¢)

Let us consider these rate equations one by one. First consider dN, /dt. There are four parts to the rate
equation: excitation 1 — 3, stimulated emission 3 — 1, spontaneous emission 3 — 1, and spontaneous
emission 2 — 1.

dN;

T —B31py(v31)Ny + B31py(v31)N3 + A3 N3 + A3 N, (R1)
Similarly, for dN, /dt, we must take into account: spontaneous emission 3 — 2, spontaneous emission 2 —

1, stimulated emission 3 — 2, and absorption 2 — 3.

dN,
T A3y N3 — Ay1 Ny + B3ppy (v32)N3 — Baapy (v32) N, (R2)

Finally, for dN3 /dt, we consider: absorption 1 — 3, stimulated emission 3 — 1, spontaneous emission 3 —
2, spontaneous emission 3 — 1, stimulated emission 3 = 2, and absorption 2 — 3.
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dN;
—— = B31p,(v31)N; — B31p,(v31)N3 — A3, N3 — A3 N3

dt
—B3,0,(v32)N3 + B3,p, (v32) N, (R3)
Because each level is non-degenerate, the rate equations (R1), (R2) and (R3) apply to the populations of
states 1, 2, and 3. When the system achieves equilibrium, the population of each level will remain constant,
so that,

dN; dn, dN;
?— O,W_ 0, and,y— 0
Although the three rate equations can be written and solved exactly to generate expressions for the time-
dependent and equilibrium values of N;, N, and N3, we can learn an important result by considering only
the rate equation for state 2. The population of state 2, N,, is a balance between spontaneous emission 3 —
2 (A3,N3), spontaneous emission 2 - 1 (A,;N;), stimulated emission 3 — 2 [B3,p,(v32)N3] and
absorption 2 — 3 [B3,0, (V32)N,]. At equilibrium, dN, /dt = 0, and
dN.
d_tz = 0 = A3;N3 — A31 N, + B3z0y (V32) N3 — B3zpy (v32) N,
 N3[A3; + B3zpy (V32)] = Np[Azq + B3apy (v32)]
N3 Azi + B3apy(vs2)
Ny Azz + Bsapy(vs2)
Note that, N3 can be larger than N, if A1 > A3s.
~ A population inversion is possible between states 3 and 2 when the atoms excited to state 3 decay relatively

slowly to state 2 and those in state 2 decay rapidly back to the ground state.
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If this is the case, a population of state 3 can be built up, and a system of atoms that satisfies this condition
may lase. Such a system is called a gain medium.


https://meet.google.com/beq-bejw-vqz

