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Time-Dependence 
The basic equation governing the time-evolution of the wave function between measurements is the 
Schrödinger equation: 

𝑖ℏ
𝜕Ψ

𝜕𝑡
= 𝐻̂Ψ 

If the energy eigenfunctions of the system obtained by solving 𝐻̂𝑢𝑛 = 𝐸𝑛𝑢𝑛 where, 𝐻̂ = (−ℏ2 2𝑚⁄ )∇2 + 𝑉, 
are 𝑢𝑛 then, by completeness, the wave function at any time 𝑡 can be expressed as a linear combination of 
𝑢𝑛  

𝜓(𝒓, 𝑡) =∑𝑎𝑛(𝑡)𝑢𝑛(𝒓)

𝑛

 

where the coefficients 𝑎𝑛 are, in general, functions of time. So far, we have restricted our discussion to 
systems whose Hamiltonians have no explicit time dependence, but we shall now extend our treatment to 
include cases where time-varying forces are acting. These problems can often be very difficult to solve and 
we shall restrict our consideration to those where particular simplifying assumptions can be applied.- 
 
THE SUDDEN APPROXIMATION 
This is one of the simplifying assumptions. The sudden approximation can be used when the Hamiltonian 

changes instantaneously from one time-independent form – say, 𝐻̂1 to another – say, 𝐻̂2 – at  a time which 
we take to be 𝑡 = 0. This means that, 

𝐻̂ = 𝐻̂1      𝑡 ≤ 0

𝐻̂ = 𝐻̂2      𝑡 > 0
} 

We assume that the eigenfunctions of 𝐻̂1 and 𝐻̂2 are 𝑢𝑛 and 𝑣𝑛, respectively. We also assume that the system 

is known to be in one of the eigenstates of 𝐻̂1 – say, that is represented by 𝑢0 before the change. We shall 
obtain the form of the wave function at times 𝑡 > 0, and hence the probabilities that a subsequent energy 

measurement will yield a particular eigenvalue of 𝐻̂2. We first note that the form of the Schrödinger equation 

ensures that a finite discontinuity in 𝐻̂ produces a similar discontinuity in 𝜕𝜓 𝜕𝑡⁄ . Therefore 𝜓 must be 
continuous in time. Thus, immediately before and after the change we must have 

Ψ(𝒓, 0) = 𝑢0(𝒓) =∑𝑎𝑛(0)𝑣𝑛(𝒓)

𝑛

 

where we have used completeness to expand 𝑢0 in terms of the set of eigenfunctions 𝑣𝑛. As 𝐻̂2 is time-
independent, we can use  

Ψ(𝒓, 𝑡) =∑𝑎𝑛(0)𝑢𝑛(𝒓)exp⁡(− 𝑖𝐸𝑛𝑡 ℏ⁄ )

𝑛

 

to obtain an expression for Ψ at all times greater than zero, 

Ψ(𝒓, 𝑡) =∑𝑎𝑛(0)𝑣𝑛(𝒓)exp⁡(− 𝑖𝐸𝑛𝑡 ℏ⁄ )

𝑛

 

where, the energy levels 𝐸𝑛 are the eigenvalues of 𝐻̂2. Expressions for the constants 𝑎𝑛(0) can be obtained 
by multiplying both sides of 
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Ψ(𝒓, 0) = 𝑢0(𝒓) =∑𝑎𝑛(0)𝑣𝑛(𝒓)

𝑛

 

by 𝑣𝑛
∗ and integrating over all space. Thus 

𝑎𝑛(0) = ∫𝑣𝑛
∗ 𝑢0𝑑𝜏 

According to the quantum theory of measurement, the probability of obtaining any particular value 𝐸𝑛 as a 
result of a measurement of the energy at any time after the change is equal to |𝑎𝑛|

2. Following such a 
measurement, of course, the wave function collapses to become the corresponding eigenfunction 𝑣𝑛. As an 
example of a practical application of the sudden approximation is the change in the wave function of an atom 

following a radioactive decay of its nucleus. Tritium ( H⬚
3 ) can decay by the emission of a 𝛽 particle and a 

neutrino to become a positively charged, one-electron ion whose nucleus is He⬚
3 . As far as the atomic 

electron is concerned, therefore, its Hamiltonian has changed suddenly from that corresponding to a 
hydrogen atom with nuclear charge 𝑍 = 1 to that of a 𝐻𝑒+ ion with 𝑍 = 2. Using the energy eigenfunctions 
for a hydrogen-like (one-electron) system, we calculate the probabilities that a subsequent measurement of 
the energy of the 𝐻𝑒+ ion will find it in its ground state. The wave functions of the ground state of the tritium 
atom and the 𝐻𝑒+ ion follow directly from the hydrogenic wave functions 

𝐻:𝑢100⬚
3 = (1 𝜋𝑎0

3⁄ )1 2⁄ exp(− 𝑟 𝑎0⁄ ) 

𝐻𝑒+: 𝑢100 = (8 𝜋𝑎0
3⁄ )1 2⁄ exp(−2𝑟 𝑎0⁄ ) 

The probability of finding the 𝐻𝑒+ ion in its ground state is therefore |𝐴|2 where 

𝐴 = ∫ (8 𝜋𝑎0
3⁄ )1 2⁄ exp(−2𝑟 𝑎0⁄ )

∞

0

(1 𝜋𝑎0
3⁄ )1 2⁄ exp(− 𝑟 𝑎0⁄ ) 4𝜋𝑟2𝑑𝑟 

𝐴 = (8√2 𝑎0
3⁄ )∫ exp(−3𝑟 𝑎0⁄ )

∞

0

𝑟2𝑑𝑟 = 0.838 

so that the probability, |𝐴|2, is 0.70. A particularly interesting feature of this example follows from the fact 
that a value of the energy of the 𝐻𝑒+ ion can, in principle, be obtained from a knowledge of the energy 
associated with the nuclear decay, combined with those of the emitted 𝛽 particle and the neutrino (although 
in practice the energy of the latter would be very difficult to measure). But the 𝛽 particle and neutrino could 
well be a large distance from the atom when these measurements are made, implying that the energy of the 
ion would have been measured without apparently interfering with it. Nevertheless, quantum mechanics 
states that this measurement will cause the wave function of the atom to change from a form similar to  

Ψ(𝒓, 𝑡) =∑𝑎𝑛(0)𝑣𝑛(𝒓)exp⁡(− 𝑖𝐸𝑛𝑡 ℏ⁄ )

𝑛

 

to the appropriate energy eigenfunction. This apparent contradiction is an example of entanglement. 
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Time-Dependent Perturbation Theory 

A very important type of time-dependent problem is one where the Hamiltonian 𝐻̂ can be written as the sum 

of a time-independent part 𝐻̂0 and a small time-dependent perturbation 𝐻̂′. An example of this, to which we 
shall return later, is the case of an atom subject to the oscillating electric field associated with an 
electromagnetic wave. We shall now describe a method known as time-dependent perturbation theory for 
obtaining approximate solutions to such problems. We wish to solve the Schrödinger equation, 

𝑖ℏ
𝜕Ψ(𝒓, 𝑡)

𝜕𝑡
= 𝐻̂(𝒓, 𝑡)Ψ(𝒓, 𝑡) 

for the case where, 𝐻̂(𝒓, 𝑡) = 𝐻̂0(𝒓) + 𝐻̂′(𝒓, 𝑡). We assume that the eigenfunctions 𝑢𝑘(𝒓) of 𝐻̂0(𝒓) are 
known and expand the wave function Ψ(𝒓, 𝑡) as a linear combination of these 

Ψ(𝒓, 𝑡) = ∑𝑐𝑘(𝑡)𝑢𝑘(𝒓)exp⁡(− 𝑖𝐸𝑘𝑡 ℏ⁄ )

𝑘

 

where the expansion coefficients 𝑐𝑘 have been defined so as to exclude the factors exp⁡(− 𝑖𝐸𝑘𝑡 ℏ⁄ ), as this 

simplifies the ensuing argument. Substituting 𝐻̂(𝒓, 𝑡) = 𝐻̂0(𝒓) + 𝐻̂′(𝒓, 𝑡) and Ψ(𝒓, 𝑡) =
∑ 𝑐𝑘(𝑡)𝑢𝑘(𝒓)exp⁡(− 𝑖𝐸𝑘𝑡 ℏ⁄ )𝑘  in the Schrödinger equation, 

𝑖ℏ∑(
𝜕𝑐𝑘
𝜕𝑡

− 𝑖𝜔𝑘𝑐𝑘)𝑢𝑘 exp(−𝑖𝜔𝑘𝑡)

𝑘

= ∑[𝑐𝑘ℏ𝜔𝑘𝑢𝑘 exp(−𝑖𝜔𝑘𝑡) + 𝑐𝑘𝐻̂
′𝑢𝑘 exp(−𝑖𝜔𝑘𝑡)]

𝑘

 

where, 𝜔𝑘 = 𝐸𝑘 ℏ⁄ .  

∴  ∑(𝑖ℏ
𝜕𝑐𝑘
𝜕𝑡

− 𝑐𝑘𝐻̂′)

𝑘

𝑢𝑘 exp(−𝑖𝜔𝑘𝑡) = 0 

We now multiply the above equation by the complex conjugate of one of the unperturbed eigenfunctions, 
𝑢𝑚
∗ , and integrate over all space to get 

𝑖ℏ
𝜕𝑐𝑚
𝜕𝑡

exp(−𝑖𝜔𝑚𝑡) −∑𝑐𝑘
𝑘

⟨𝑢𝑚|𝐻̂′|𝑢𝑘⟩ exp[𝑖(𝜔𝑚 −𝜔𝑘)𝑡] = 0 

That is, 
𝜕𝑐𝑚
𝜕𝑡

=
1

𝑖ℏ
∑𝑐𝑘
𝑘

𝐻̂𝑚𝑘
′ exp(𝑖𝜔𝑚𝑘𝑡) 

where, 𝐻̂𝑚𝑘
′ = ⟨𝑢𝑚|𝐻̂′|𝑢𝑘⟩ and 𝜔𝑚𝑘 = 𝜔𝑚 −𝜔𝑘. Everything we have done so far is exact, but we now apply 

perturbation techniques in a similar manner to that described for the time-independent case. We introduce 

a constant 𝛽, replace 𝐻̂′ by 𝛽𝐻̂′ and expand the constants 𝑐𝑘 in a perturbation series 
𝑐𝑘 = 𝑐𝑘0 + 𝛽𝑐𝑘1 + 𝛽2𝑐𝑘2 +⋯ 

Therefore, 
𝜕𝑐𝑚
𝜕𝑡

=
1

𝑖ℏ
∑𝑐𝑘
𝑘

𝐻̂𝑚𝑘
′ exp(𝑖𝜔𝑚𝑘𝑡) 

with the use of the above perturbation series becomes, 
𝜕

𝜕𝑡
(𝑐𝑚0 + 𝛽𝑐𝑚1 + 𝛽2𝑐𝑚2 +⋯) =

1

𝑖ℏ
∑(𝑐𝑘0 + 𝛽𝑐𝑘1 + 𝛽2𝑐𝑘2 +⋯)

𝑘

𝛽𝐻̂𝑚𝑘
′ exp(𝑖𝜔𝑚𝑘𝑡) 

or,  
𝜕𝑐𝑚0

𝜕𝑡
+ 𝛽

𝜕𝑐𝑚1

𝜕𝑡
+ ⋯ =

1

𝑖ℏ
𝛽∑𝑐𝑘0

𝑘

𝐻̂𝑚𝑘
′ exp(𝑖𝜔𝑚𝑘𝑡) + ⋯ 

where only the terms having the zeroth and the first powers of 𝛽 have been retained. Equating the 
coefficients of the zeroth and the first powers of 𝛽 we have, 

𝜕𝑐𝑚0

𝜕𝑡
= 0 

and  
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𝜕𝑐𝑚1

𝜕𝑡
=

1

𝑖ℏ
∑𝑐𝑘0
𝑘

𝐻̂𝑚𝑘
′ exp(𝑖𝜔𝑚𝑘𝑡) 

Thus, we have, 𝜕𝑐𝑚0 𝜕𝑡⁄ = 0, with the coefficients 𝑐𝑚0 are constant in time, which is to be expected as the 
zero-order Hamiltonian is time independent, and  

𝜕𝑐𝑚1

𝜕𝑡
=

1

𝑖ℏ
∑𝑐𝑘0
𝑘

𝐻̂𝑚𝑘
′ exp(𝑖𝜔𝑚𝑘𝑡) , where⁡we⁡define⁡𝑐𝑚1 =

1

𝑖ℏ
∑𝑐𝑘0
𝑘

∫ 𝐻̂𝑚𝑘
′ exp(𝑖𝜔𝑚𝑘𝑡)

𝑡

0

𝑑𝑡 

We are particularly interested in the case where the system is known to be in a particular eigenstate – say, 
that represented by 𝑢𝑛 – at the time 𝑡 = 0 so that 𝑐𝑛0 = 1, and 𝑐𝑘0 = 0,  𝑘 ≠ 𝑛. 

∴ 𝑐𝑚1 =
1

𝑖ℏ
∫ 𝐻̂𝑚𝑛

′′ exp(𝑖𝜔𝑚𝑛𝑡)
𝑡

0

𝑑𝑡 
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We are particularly interested in the case where the system is known to be in a particular eigenstate – say, 
that represented by 𝑢𝑛 – at the time 𝑡 = 0 so that 𝑐𝑛0 = 1, and 𝑐𝑘0 = 0,  𝑘 ≠ 𝑛. 

∴ 𝑐𝑚1 =
1

𝑖ℏ
∫ 𝐻̂𝑚𝑛

′′ exp(𝑖𝜔𝑚𝑛𝑡)
𝑡

0

𝑑𝑡 

Remembering that 𝑐𝑚0 = 0 (𝑚 ≠ 𝑛) we see that the probability of finding the system in a state represented 
by 𝑢𝑚 where 𝑚 ≠ 𝑛 is given by |𝑐𝑚1|

2, provided that 𝑐𝑚1 is small enough for the perturbation approximation 
to hold. 
However, from 

𝑑𝑐𝑚
𝑑𝑡

=
1

𝑖ℏ
∑𝑐𝑘
𝑘

𝐻̂𝑚𝑘
′ exp(𝑖𝜔𝑚𝑘𝑡) =

1

𝑖ℏ
∑𝑐𝑘
𝑘

exp[𝑖(𝐸𝑚 − 𝐸𝑘) 𝑡 ℏ⁄ ] ⟨𝑢𝑚|𝐻̂
′|𝑢𝑘⟩ 

one might proceed as follows: Let us suppose that the perturbation 𝐻̂′(𝒓, 𝑡) was applied at time 𝑡 = 0, and 
that before the perturbation was applied, the system was in the stationary state 𝑛 with energy 𝐸𝑛. The state 
at 𝑡 = 0 is hence, Ψ(𝒓, 𝑡) = exp(− 𝑖𝐸𝑛𝑡 ℏ⁄ ) 𝑢𝑛(𝒓), and the 𝑡 = 0 values of the expansion coefficients in 
Ψ(𝒓, 𝑡) = ∑ 𝑐𝑘(𝑡)𝑢𝑘(𝒓)exp⁡(− 𝑖𝐸𝑘𝑡 ℏ⁄ )𝑘  are thus 𝑐𝑛(0) = 1 and 𝑐𝑘(0) = 0, for 𝑘 ≠ 𝑛: 𝑐𝑘(0) = 𝛿𝑘𝑛. 

Assume: the perturbation 𝐻̂′(𝒓, 𝑡) acts for only a short time. The change in the expansion coefficients 𝑐𝑘 
from their initial values at the time the perturbation is applied will be small. 
To a good approximation, we can replace the expansion coefficients on the right side of 

𝑑𝑐𝑚
𝑑𝑡

=
1

𝑖ℏ
∑𝑐𝑘
𝑘

𝐻̂𝑚𝑘
′ exp(𝑖𝜔𝑚𝑘𝑡) =

1

𝑖ℏ
∑𝑐𝑘
𝑘

exp[𝑖(𝐸𝑚 − 𝐸𝑘) 𝑡 ℏ⁄ ] ⟨𝑢𝑚|𝐻̂
′|𝑢𝑘⟩ 

by their initial values 𝑐𝑘(0) = 𝛿𝑘𝑛. 
Therefore, the form 

𝑑𝑐𝑚
𝑑𝑡

=
1

𝑖ℏ
∑𝑐𝑘
𝑘

𝐻̂𝑚𝑘
′ exp(𝑖𝜔𝑚𝑘𝑡) =

1

𝑖ℏ
∑𝑐𝑘
𝑘

exp[𝑖(𝐸𝑚 − 𝐸𝑘) 𝑡 ℏ⁄ ] ⟨𝑢𝑚|𝐻̂
′|𝑢𝑘⟩ 

with the coefficients substituted by their initial values 𝑐𝑘(0) = 𝛿𝑘𝑛 become, 
𝑑𝑐𝑚
𝑑𝑡

≈
1

𝑖ℏ
exp(𝑖𝜔𝑚𝑛𝑡) 𝐻̂𝑚𝑛

′ =
1

𝑖ℏ
exp[𝑖(𝐸𝑚 − 𝐸𝑛) 𝑡 ℏ⁄ ] ⟨𝑢𝑚|𝐻̂

′|𝑢𝑛⟩ 

Let the perturbation 𝐻̂′ act from 𝑡 = 0 to 𝑡 = 𝑡′. So, integrating from 𝑡 = 0 to 𝑡 = 𝑡′, and using 𝑐𝑘(0) = 𝛿𝑘𝑛 
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𝑐𝑚(𝑡
′) − 𝑐𝑚(0) =

1

𝑖ℏ
∫ exp[𝑖(𝐸𝑚 − 𝐸𝑛) 𝑡 ℏ⁄ ] ⟨𝑢𝑚|𝐻̂

′|𝑢𝑛⟩

𝑡′

0

𝑑𝑡 

which becomes 

𝑐𝑚(𝑡
′) = 𝛿𝑚𝑛 +

1

𝑖ℏ
∫ exp[𝑖(𝐸𝑚 − 𝐸𝑛) 𝑡 ℏ⁄ ] ⟨𝑢𝑚|𝐻̂

′|𝑢𝑛⟩

𝑡′

0

𝑑𝑡 

Use of the above approximate result for the expansion coefficients in  

Ψ(𝒓, 𝑡) =∑𝑐𝑘(𝑡)𝑢𝑘(𝒓)exp⁡(− 𝑖𝐸𝑘𝑡 ℏ⁄ )

𝑘

 

gives the desired approximation to the state function at time 𝑡′ for the case that the time-dependent 

perturbation 𝐻̂′ is applied at 𝑡 = 0 to a system in stationary state 𝑛. For times after 𝑡′, the perturbation has 

ceased to act, and 𝐻̂′ = 0. Therefore,  
𝑑𝑐𝑚
𝑑𝑡

=
1

𝑖ℏ
∑𝑐𝑘
𝑘

𝐻̂𝑚𝑘
′ exp(𝑖𝜔𝑚𝑘𝑡) =

1

𝑖ℏ
∑𝑐𝑘
𝑘

exp[𝑖(𝐸𝑚 − 𝐸𝑘) 𝑡 ℏ⁄ ] ⟨𝑢𝑚|𝐻̂
′|𝑢𝑘⟩ 

gives 𝑑𝑐𝑚 𝑑𝑡⁄ = 0 for 𝑡 > 𝑡′, so 𝑐𝑚(𝑡) = 𝑐𝑚(𝑡
′) for 𝑡 ≥ 𝑡′. Therefore, for times after exposure to the 

perturbation, the state function is 

Ψ(𝒓, 𝑡) =∑𝑐𝑚(𝑡
′)𝑢𝑚(𝒓)exp⁡(− 𝑖𝐸𝑚𝑡 ℏ⁄ )

𝑚

 for 𝑡 ≥ 𝑡′ 

where 𝑐𝑚(𝑡
′) is given by 

𝑐𝑚(𝑡
′) = 𝛿𝑚𝑛 +

1

𝑖ℏ
∫ exp[𝑖(𝐸𝑚 − 𝐸𝑛) 𝑡 ℏ⁄ ] ⟨𝑢𝑚|𝐻̂

′|𝑢𝑛⟩

𝑡′

0

𝑑𝑡. 

Note that, in the above expression for  

Ψ(𝒓, 𝑡) =∑𝑐𝑚(𝑡
′)𝑢𝑚(𝒓)exp⁡(− 𝑖𝐸𝑚𝑡 ℏ⁄ )

𝑚

 for 𝑡 ≥ 𝑡′ 

Ψ(𝒓, 𝑡) is a superposition of the eigenfunctions 𝑢𝑚(𝒓) of the energy operator 𝐻̂0(𝒓), the expansion 
coefficients being 𝑐𝑚(𝑡

′)exp⁡(− 𝑖𝐸𝑚𝑡 ℏ⁄ ). A measurement of the system’s energy at a time after 𝑡′ will give 

one of the eigenvalues 𝐸𝑚 of the operator 𝐻̂0(𝒓), and the probability of getting 𝐸𝑚 equals the square of the 
absolute value of the expansion coefficient that multiplies 𝑢𝑚(𝒓). 
 
A measurement of the system’s energy at a time after 𝑡′ will give one of the eigenvalues 𝐸𝑚 of the operator 

𝐻̂0(𝒓), and the probability of getting 𝐸𝑚 equals the square of the absolute value of the expansion coefficient 
that multiplies 𝑢𝑚(𝒓). Therefore, this probability becomes, 

|𝑐𝑚(𝑡
′) exp(− 𝑖𝐸𝑚𝑡 ℏ⁄ )|2 = |𝑐𝑚(𝑡

′)|2. 
The time-dependent perturbation changes the system’s state function from 

Ψ(𝒓, 𝑡) = 𝑢𝑛(𝒓)exp⁡(− 𝑖𝐸𝑛𝑡 ℏ⁄ ) 
to the superposition 

Ψ(𝒓, 𝑡) =∑𝑐𝑚(𝑡
′)𝑢𝑚(𝒓)exp⁡(− 𝑖𝐸𝑚𝑡 ℏ⁄ )

𝑚

 for 𝑡 ≥ 𝑡′. 

Measurement of the energy then changes Ψ(𝒓, 𝑡) to one of the energy-eigenfunctions 
𝑢𝑚(𝒓)exp⁡(− 𝑖𝐸𝑚𝑡 ℏ⁄ ). The net result is a transition from stationary state 𝑛 to stationary state 𝑚, the 
probability of such a transition being |𝑐𝑚(𝑡

′)|2. 
 
4. Interaction of Radiation and Matter: Towards Spectroscopy 
We now consider the interaction of an atom/molecule with electromagnetic radiation. A proper quantum-
mechanical approach would treat both the atom and the radiation quantum mechanically, but we shall 
simplify things by using the classical picture of the light as an electromagnetic wave of oscillating electric and 
magnetic fields. Thus, traditional spectroscopy is semi-classical. Usually, the interaction between the 
radiation’s magnetic field and the atom’s/molecule’s charges is much weaker than the interaction between 
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the radiation’s electric field and the charges, so we shall consider only the latter interaction. Say, ℰ is the 

electric field (the magnitude, or the scalar part only of the actual field, ℰ⃗) associated with the electromagnetic 
radiation ⇒ a plane-polarized radiation. The electric field is defined as the force per unit charge, so the force 
on charge 𝑄𝑖  is 𝐹 = 𝑄𝑖ℰ𝑥 = −𝑑𝑉 𝑑𝑥⁄ . Integration leads to: 𝑉 = −𝑄𝑖ℰ𝑥𝑥, potential energy of interaction 
between the radiation’s electric field and the charge (where the integration constant has been scaled to 
zero). For a system that has several charges, 𝑉 = −∑ 𝑄𝑖𝑖 𝑥𝑖ℰ𝑥. This potential energy of interaction between 

the radiation’s electric field and several charges 𝑉 = −∑ 𝑄𝑖𝑖 𝑥𝑖ℰ𝑥 is the time-dependent perturbation, 𝐻̂′(𝑡). 
The space and time dependence of the electric field of an electromagnetic wave traveling in the 𝑧 direction 
with wavelength 𝜆 and frequency 𝜈 is given by ℰ𝑥 = ℰ0 sin(2𝜋𝜈𝑡 − 2𝜋𝑧 𝜆⁄ ), where ℰ0 (the amplitude) is the 
maximum value of ℰ𝑥. 

∴ 𝐻̂′(𝑡) = −ℰ0∑𝑄𝑖
𝑖

𝑥𝑖 sin(2𝜋𝜈𝑡 − 2𝜋𝑧𝑖 𝜆⁄ ) 

The summation in the above expression runs over all the electrons and nuclei of the atom or molecule. 
We define: 𝜔 = 2𝜋𝜈, the angular/circular frequency, 𝑘 = 2𝜋 𝜆⁄ , the wave number, and 𝜔𝑚𝑛 =
(𝐸𝑚 − 𝐸𝑛) ℏ⁄ . 

∴ 𝐻̂′(𝑡) = −ℰ0∑𝑄𝑖
𝑖

𝑥𝑖 sin(𝜔𝑡 − 𝑘𝑧𝑖) 

We recall that, 

𝑐𝑚(𝑡
′) ≈ 𝛿𝑚𝑛 +

1

𝑖ℏ
∫ exp[𝑖(𝐸𝑚 − 𝐸𝑛) 𝑡 ℏ⁄ ] ⟨𝑢𝑚|𝐻̂

′|𝑢𝑛⟩

𝑡′

0

𝑑𝑡 

Therefore, from 

𝐻̂′(𝑡) = −ℰ0∑𝑄𝑖
𝑖

𝑥𝑖 sin(𝜔𝑡 − 𝑘𝑧𝑖) 

and, 

𝑐𝑚(𝑡
′) ≈ 𝛿𝑚𝑛 +

1

𝑖ℏ
∫ exp(𝑖𝜔𝑚𝑛𝑡) ⟨𝑢𝑚|𝐻̂

′|𝑢𝑛⟩

𝑡′

0

𝑑𝑡 

we write, 

𝑐𝑚(𝑡
′) ≈ 𝛿𝑚𝑛 +

𝑖ℰ0
ℏ

∫ exp(𝑖𝜔𝑚𝑛𝑡)

𝑡′

0

⟨𝑢𝑚| ∑ 𝑄𝑖𝑖 𝑥𝑖 sin(𝜔𝑡 − 𝑘𝑧𝑖) |𝑢𝑛⟩𝑑𝑡 

Note that, the integral ⟨𝑢𝑚| ∑ 𝑄𝑖𝑖 𝑥𝑖 sin(𝜔𝑡 − 𝑘𝑧𝑖) |𝑢𝑛⟩ is over all space, but significant contributions to its 
magnitude come only from regions where 𝑢𝑚 and 𝑢𝑛 are of significant magnitude. In regions well outside 
the atom/molecule, 𝑢𝑚 and 𝑢𝑛 are vanishingly small, and such regions can be ignored. Let the origin of the 
coordinate system be chosen within the atom/molecule. Since regions well outside the atom can be ignored, 
the coordinate 𝑧𝑖  can be considered to have a maximum magnitude of the order of one nm. For ultraviolet 
light, the wavelength 𝜆 is on the order of 102 nm. For visible, infrared, microwave, and radiofrequency 
radiation, 𝜆 is even larger. 
∴ 𝑘𝑧𝑖 = 2𝜋𝑧𝑖 𝜆⁄  is very small and can be neglected. 

∴∑𝑄𝑖
𝑖

𝑥𝑖 sin(𝜔𝑡 − 𝑘𝑧𝑖) ≅∑𝑄𝑖
𝑖

𝑥𝑖 sin𝜔𝑡 

Now, note that, since, 

𝑒𝑖𝜃 − 𝑒−𝑖𝜃

2𝑖
=
cos 𝜃 + 𝑖 sin 𝜃 − [cos(−𝜃) + 𝑖 sin(−𝜃)]

2𝑖
=
cos 𝜃 + 𝑖 sin𝜃 −(cos𝜃 − 𝑖 sin𝜃)

2𝑖
= sin𝜃 

hence, sin𝜔𝑡 = (𝑒𝑖𝜔𝑡 − 𝑒−𝑖𝜔𝑡) 2𝑖⁄ . Therefore, 

𝑐𝑚(𝑡
′) ≈ 𝛿𝑚𝑛 +

𝑖ℰ0
ℏ

∫ exp(𝑖𝜔𝑚𝑛𝑡)

𝑡′

0

⟨𝑢𝑚| ∑ 𝑄𝑖𝑖 𝑥𝑖 sin(𝜔𝑡 − 𝑘𝑧𝑖) |𝑢𝑛⟩𝑑𝑡 

becomes, 
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𝑐𝑚(𝑡
′) ≈ 𝛿𝑚𝑛 +

ℰ0
2ℏ

⟨𝑢𝑚| ∑ 𝑄𝑖𝑖 𝑥𝑖|𝑢𝑛⟩∫[𝑒𝑖(𝜔𝑚𝑛+𝜔)𝑡 − 𝑒𝑖(𝜔𝑚𝑛−𝜔)𝑡]𝑑𝑡

𝑡′

0

 

We note that, 

∫ 𝑒𝑎𝑡
𝑡′

0

𝑑𝑡 =
1

𝑎
(𝑒𝑎𝑡

′
− 1), 

and using this result, we get, 

𝑐𝑚(𝑡
′) ≈ 𝛿𝑚𝑛 +

ℰ0
2ℏ

⟨𝑢𝑚| ∑ 𝑄𝑖𝑖 𝑥𝑖|𝑢𝑛⟩ [
𝑒𝑖(𝜔𝑚𝑛+𝜔)𝑡

′
− 1

𝑖(𝜔𝑚𝑛 +𝜔)
−
𝑒𝑖(𝜔𝑚𝑛−𝜔)𝑡

′
− 1

𝑖(𝜔𝑚𝑛 − 𝜔)
] 

For 𝑚 ≠ 𝑛, 𝛿𝑚𝑛 = 0. We know, |𝑐𝑚(𝑡
′)|2 gives the probability of a transition to state 𝑚 from state 𝑛. There 

are two cases where this probability becomes of significant magnitude. We now explore these two cases in 
details. 
 
Case 1: 𝝎𝒎𝒏 = 𝝎 
If 𝜔𝑚𝑛 = 𝜔, the denominator of the second fraction in brackets is zero and this fraction’s absolute value is 
large, but not infinite. This is so because of the l’Hôpital’s rule: 

lim
(𝜔𝑚𝑛−𝜔)→0

𝑒𝑖(𝜔𝑚𝑛−𝜔)𝑡
′
− 1

𝑖(𝜔𝑚𝑛 −𝜔)
= lim

(𝜔𝑚𝑛−𝜔)→0
𝑖𝑡′𝑒𝑖(𝜔𝑚𝑛−𝜔)𝑡

′
1⁄ = 𝑖𝑡′ 

For 𝜔𝑚𝑛 = 𝜔, [recall, 𝜔 = 2𝜋𝜈, and 𝜔𝑚𝑛 = (𝐸𝑚 − 𝐸𝑛) ℏ⁄ ], 𝐸𝑚 − 𝐸𝑛 = ℎ𝜈. Exposure of the atom/molecule 
to radiation of frequency 𝜈 has produced a transition from stationary state 𝑛 to stationary state 𝑚, where 
(since 𝜈 is positive) 𝐸𝑚 > 𝐸𝑛. We might suppose that the energy for this transition came from the system’s 
absorption of a photon of energy ℎ𝜈. This supposition is confirmed by a fully quantum-mechanical treatment 
(called quantum field theory) in which the radiation is treated quantum mechanically rather than classically. 
We have absorption of radiation with a consequent increase in the system’s energy. 
 
Case 2: 𝝎𝒎𝒏 = −𝝎 
For 𝜔𝑚𝑛 = −𝜔, we get 𝐸𝑛 − 𝐸𝑚 = ℎ𝜈. Exposure to radiation of frequency 𝜈 has induced a transition from 
stationary state 𝑛 to stationary state 𝑚, where (since 𝜈 is positive) 𝐸𝑛 > 𝐸𝑚. The system has gone to a lower 
energy level, and a quantum field theory treatment shows that a photon of energy ℎ𝜈 is emitted in this 
process. This is stimulated emission of radiation. Stimulated emission occurs in lasers. 

There is a defect in our treatment → it does not predict spontaneous emission. 
 
Spontaneous emission: the emission of a photon by a system not exposed to radiation, the system falling to 
a lower energy level in the process. Quantum field theory does predict spontaneous emission. Note that, 
from 

𝑐𝑚(𝑡
′) ≈ 𝛿𝑚𝑛 +

ℰ0
2𝑖ℏ

⟨𝑢𝑚| ∑ 𝑄𝑖𝑖 𝑥𝑖|𝑢𝑛⟩ [
𝑒𝑖(𝜔𝑚𝑛+𝜔)𝑡

′
− 1

𝑖(𝜔𝑚𝑛 +𝜔)
−
𝑒𝑖(𝜔𝑚𝑛−𝜔)𝑡

′
− 1

𝑖(𝜔𝑚𝑛 − 𝜔)
] 

we can say that, that the probability of absorption, |𝑐𝑚(𝑡
′)|2, is proportional to |⟨𝑢𝑚| ∑ 𝑄𝑖𝑖 𝑥𝑖|𝑢𝑛⟩|

2. 
The quantity, ∑ 𝑄𝑖𝑖 𝑥𝑖 is the 𝑥 component of the system’s electric dipole moment operator, 𝝁̂, which is given 
by 

𝝁̂ = 𝒊∑𝑄𝑖
𝑖

𝑥𝑖 + 𝒋∑𝑄𝑖
𝑖

𝑦𝑖 + 𝒌∑𝑄𝑖
𝑖

𝑧𝑖 = 𝒊𝜇̂𝑥 + 𝒋𝜇̂𝑦 + 𝒌𝜇̂𝑧 

𝒊, 𝒋, 𝒌 are unit vectors along the axes and 𝜇̂𝑥, 𝜇̂𝑦, 𝜇̂𝑧 are the components of 𝝁̂. We assumed polarized radiation 

with an electric field in the 𝑥 direction only. If the radiation has electric-field components in the 𝑦 and 𝑧 
directions also, then the probability of absorption will be proportional to 

|⟨𝑢𝑚|𝜇̂𝑥|𝑢𝑛⟩|
2 + |⟨𝑢𝑚|𝜇̂𝑦|𝑢𝑛⟩|

2
+ |⟨𝑢𝑚|𝜇̂𝑧|𝑢𝑛⟩|

2 = |⟨𝑢𝑚|𝝁̂|𝑢𝑛⟩|
2 

The above relation holds true since 

|𝑨| = (𝐴𝑥
2 + 𝐴𝑦

2 + 𝐴𝑧
2)

1 2⁄
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for a vector 𝑨. The integral, ⟨𝑢𝑚|𝝁̂|𝑢𝑛⟩ = 𝝁𝒎𝒏 is called the transition (dipole) moment (integral). When 
𝝁𝒎𝒏 = 0, the transition between states 𝑚 and 𝑛 with absorption or emission of radiation is said to be 
forbidden. Allowed transitions have 𝝁𝒎𝒏 ≠ 0. Because of approximations made in the derivation of  

𝑐𝑚(𝑡
′) ≈ 𝛿𝑚𝑛 +

ℰ0
2𝑖ℏ

⟨𝑢𝑚| ∑ 𝑄𝑖𝑖 𝑥𝑖|𝑢𝑛⟩ [
𝑒𝑖(𝜔𝑚𝑛+𝜔)𝑡

′
− 1

𝑖(𝜔𝑚𝑛 +𝜔)
−
𝑒𝑖(𝜔𝑚𝑛−𝜔)𝑡

′
− 1

𝑖(𝜔𝑚𝑛 − 𝜔)
] 

forbidden transitions may have some small probability of occurring. 
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Application to a two-level system 
Let us think of an atom/molecule, which, for simplicity, we will treat as a two-level system to maintain a 
simplicity of our formal treatment. The system is initially isolated (no interatomic/intermolecular 
interactions), and is kept in the dark (no interaction with light/electromagnetic waves). Such an initial state 

of the system is defined well by the zeroth-order/unperturbed Hamiltonian 𝐻̂0 and satisfies the Schrödinger 
equation 

𝑖ℏ
𝜕𝜓

𝜕𝑡
= 𝐻̂0𝜓 (1) 

The solutions of the above equation  are the stationary states 

𝜓𝑛(𝑟, 𝑡) = 𝜙𝑛(𝑟)𝑒−𝑖𝐸𝑛𝑡 ℏ⁄  
such that, 𝐻̂0𝜙𝑛(𝑟) = 𝐸𝑛𝜙𝑛(𝑟), with the property that 

𝜓𝑛
∗ (𝑟, 𝑡)𝜓𝑛(𝑟, 𝑡) = 𝜙𝑛

∗(𝑟)𝑒𝑖𝐸𝑛𝑡 ℏ⁄ 𝜙𝑛(𝑟)𝑒−𝑖𝐸𝑛𝑡 ℏ⁄ = 𝜙𝑛
∗(𝑟)𝜙𝑛(𝑟) ⇒ |𝜓𝑛(𝑟, 𝑡)|2 = |𝜙𝑛(𝑟)|2 

Now let us consider the interaction of this system with light/electromagnetic radiation (of optical range, UV 

to IR, with the wavelength spanning from ~103Å to ~107Å), having an electric field ℇ⃗⃗⃗ and a magnetic field 

𝐵⃗⃗. Since the interaction of the atomic/molecular electrons with ℇ⃗⃗⃗ is much stronger than all other interactions, 
we take into consideration this interaction only, and treat all others as hyperfine interactions. A typical 

molecule has a dimension of a few Å. Hence, for all practical purposes, light is assumed to be homogeneous 
in every part of the molecule. For a monochromatic light of frequency 𝜈, 

ℇ⃗⃗⃗ = ℇ⃗⃗⃗0 cos(2𝜋𝜈𝑡) = ℇ⃗⃗⃗0 cos 𝜔𝑡 

The electrons of the atom/molecule interact with ℇ⃗⃗⃗ of light along the direction of ℇ⃗⃗⃗. Say, 𝑓(𝑟, 𝑡) is the 
electrical potential of the electric field at a point 𝑟 in space. Hence, 𝑓(𝑟, 𝑡) is given by the scalar product 

𝑓(𝑟, 𝑡) = −𝑟 ⋅ ℇ⃗⃗⃗ 

If 𝑉(𝑟, 𝑡) is the potential energy of interaction of a point charge 𝑞 with the electric field ℇ⃗⃗⃗, then 
𝑉(𝑟, 𝑡) = 𝑞𝑓(𝑟, 𝑡) 

However, our system is essentially a system of such point charges (electrons), and 
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𝑉(𝑟, 𝑡) = ∑ 𝑞𝑖

𝑖

𝑓𝑖(𝑟, 𝑡) = ∑ 𝑞𝑖

𝑖

(−𝑟 ⋅ ℇ⃗⃗⃗) = − ∑ 𝑞𝑖

𝑖

𝑟𝑖 ⋅ ℇ⃗⃗⃗ = − ∑ 𝜇𝑖

𝑖

⋅ ℇ⃗⃗⃗ 

Hence, for our treatment, the light source acts as the perturbation, and the corresponding perturbation 

potential has the form 𝑉̂(𝑟, 𝑡) = −𝜇 ⋅ ℇ⃗⃗⃗. We assume that we switch on the light source (perturbation) at 𝑡 =

0, and that 𝑉̂(𝑟, 𝑡) acts as a small perturbation, so that the time-dependent perturbation theory is applicable. 
Therefore, at all times 𝑡 ≥ 0, the Hamiltonian for the system becomes 

𝐻̂ = 𝐻̂0 + 𝑉̂(𝑟, 𝑡) at 𝑡 ≥ 0 
We also recall that; the unperturbed system is defined by (1) in a manner such that 𝐻̂0𝜙𝑛(𝑟) = 𝐸𝑛𝜙𝑛(𝑟) and 

the stationary states are given by 𝜓𝑛(𝑟, 𝑡) = 𝜙𝑛(𝑟)𝑒−𝑖𝐸𝑛𝑡 ℏ⁄ . Our system has an infinite number of stationary 
states, and {𝜙𝑛(𝑟)} spans a complete orthonormal set of functions. To preserve the simplicity of our 
derivation, we assume that our molecule has only two stationary states, 𝜓1(𝑟, 𝑡) and 𝜓2(𝑟, 𝑡), such that, 

𝜓1(𝑟, 𝑡) = 𝜙1(𝑟)𝑒−𝑖𝐸1𝑡 ℏ⁄ , 𝜓2(𝑟, 𝑡) = 𝜙2(𝑟)𝑒−𝑖𝐸2𝑡 ℏ⁄  
𝜙1(𝑟) and 𝜙2(𝑟) are the eigenfunctions of 𝐻̂0. We solve 

𝑖ℏ
𝜕𝜓

𝜕𝑡
= 𝐻̂𝜓 

Does the Schrödinger equation get satisfied with 𝐻̂0 and the above forms of 𝜓1(𝑟, 𝑡) and 𝜓2(𝑟, 𝑡)? 

Let us check with 𝜓1(𝑟, 𝑡), where 𝜓1(𝑟, 𝑡) = 𝜙1(𝑟)𝑒−𝑖𝐸1𝑡 ℏ⁄ . Hence, 

𝑖ℏ
𝜕

𝜕𝑡
𝜙1(𝑟)𝑒−𝑖𝐸1𝑡 ℏ⁄ = 𝐻̂0𝜙1(𝑟)𝑒−𝑖𝐸1𝑡 ℏ⁄  

∴ LHS = 𝑖ℏ𝜙1(𝑟)𝑒−𝑖𝐸1𝑡 ℏ⁄ (−
𝑖𝐸1

ℏ
) = 𝐸1𝜙1(𝑟)𝑒−𝑖𝐸1𝑡 ℏ⁄  and RHS = 𝐸1𝜙1(𝑟)𝑒−𝑖𝐸1𝑡 ℏ⁄  

⇒ LHS = RHS 
One may verify with 𝜙2(𝑟) in the same manner. 

Say, the system is initially (at 𝑡 = 0) in state 𝜓1. Hence, the initial state wavefunction for the system is given 
by 𝜓1(𝑟, 𝑡). At 𝑡 = 0, the light source is switched on. For any time 𝑡 ≥ 0, 𝜓1(𝑟, 𝑡) is not an eigenfunction of 

𝐻̂. Say, at 𝑡 ≥ 0, the wavefunction has the form 
𝜓(𝑟, 𝑡) = 𝑎1(𝑡)𝜓1(𝑟, 𝑡) + 𝑎2(𝑡)𝜓2(𝑟, 𝑡) (2) 

where 𝑎1 and 𝑎2 are the combining coefficients and are functions of 𝑡 only, while 𝜓1, 𝜓2 and 𝑉̂ are functions 
of both space and time. We note that, any 𝑎𝑖

∗(𝑡)𝑎𝑖(𝑡) = |𝑎𝑖(𝑡)|2 gives the probability of finding the system 
in any state 𝑖.  

∴ 𝑖ℏ
𝜕𝜓

𝜕𝑡
= 𝐻̂𝜓, 𝐻̂ = 𝐻̂0 + 𝑉̂(𝑟, 𝑡), 𝑉̂(𝑟, 𝑡) = −𝜇 ⋅ ℇ⃗⃗⃗ at 𝑡 ≥ 0 

With the wavefunction defined by (2), substitution in the Schrödinger equation gives, 

𝑖ℏ
𝜕

𝜕𝑡
[𝑎1(𝑡)𝜓1(𝑟, 𝑡) + 𝑎2(𝑡)𝜓2(𝑟, 𝑡)] = [𝐻̂0 + 𝑉̂(𝑟, 𝑡)][𝑎1(𝑡)𝜓1(𝑟, 𝑡) + 𝑎2(𝑡)𝜓2(𝑟, 𝑡)] 

or, 𝑖ℏ [
𝑑𝑎1

𝑑𝑡
𝜓1 + 𝑎1

𝜕𝜓1

𝜕𝑡
+

𝑑𝑎2

𝑑𝑡
𝜓2 + 𝑎2

𝜕𝜓2

𝜕𝑡
] = 𝑎1𝐻̂0𝜓1 + 𝑉̂𝑎1𝜓1 + 𝑎2𝐻̂0𝜓2 + 𝑉̂𝑎2𝜓2 (3) 

Now, 

𝑖ℏ
𝜕𝜓1(𝑟, 𝑡)

𝜕𝑡
= 𝐻̂0𝜓1(𝑟, 𝑡) 

∴ 𝑎1𝑖ℏ
𝜕𝜓1(𝑟, 𝑡)

𝜕𝑡
= 𝑎1𝐻̂0𝜓1(𝑟, 𝑡) 

and 
𝑖ℏ

𝜕𝜓2(𝑟, 𝑡)

𝜕𝑡
= 𝐻̂0𝜓2(𝑟, 𝑡) 

∴ 𝑎2𝑖ℏ
𝜕𝜓2(𝑟, 𝑡)

𝜕𝑡
= 𝑎2𝐻̂0𝜓2(𝑟, 𝑡) 

From (3), 

𝑖ℏ
𝑑𝑎1

𝑑𝑡
𝜓1 + 𝑎1𝑖ℏ

𝜕𝜓1

𝜕𝑡
+ 𝑖ℏ

𝑑𝑎2

𝑑𝑡
𝜓2 + 𝑎2𝑖ℏ

𝜕𝜓2

𝜕𝑡
= 𝑎1𝐻̂0𝜓1 + 𝑉̂𝑎1𝜓1 + 𝑎2𝐻̂0𝜓2 + 𝑉̂𝑎2𝜓2 

or, 𝑖ℏ
𝑑𝑎1

𝑑𝑡
𝜓1 + 𝑎1𝐻̂0𝜓1 + 𝑖ℏ

𝑑𝑎2

𝑑𝑡
𝜓2 + 𝑎2𝐻̂0𝜓2 = 𝑎1𝐻̂0𝜓1 + 𝑉̂𝑎1𝜓1 + 𝑎2𝐻̂0𝜓2 + 𝑉̂𝑎2𝜓2 

or, 𝑖ℏ
𝑑𝑎1

𝑑𝑡
𝜓1 + 𝑖ℏ

𝑑𝑎2

𝑑𝑡
𝜓2 = 𝑉̂𝑎1𝜓1 + 𝑉̂𝑎2𝜓2 

or, 𝑖ℏ [
𝑑𝑎1

𝑑𝑡
𝜓1 +

𝑑𝑎2

𝑑𝑡
𝜓2] = 𝑉̂𝑎1𝜓1 + 𝑉̂𝑎2𝜓2 

Left multiplication of the above equation by 𝜙2
∗(𝑟), followed by an integration over all space gives 
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𝑖ℏ
𝑑𝑎1

𝑑𝑡
∫ 𝜙2

∗𝜓1 𝑑𝑣 + 𝑖ℏ
𝑑𝑎2

𝑑𝑡
∫ 𝜙2

∗𝜓2 𝑑𝑣 = 𝑎1 ∫ 𝜙2
∗𝑉̂𝜓1 𝑑𝑣 + 𝑎2 ∫ 𝜙2

∗𝑉̂𝜓2 𝑑𝑣 

or, 𝑖ℏ
𝑑𝑎1

𝑑𝑡
∫ 𝜙2

∗𝜙1𝑒−𝑖𝐸1𝑡 ℏ⁄ 𝑑𝑣 + 𝑖ℏ
𝑑𝑎2

𝑑𝑡
∫ 𝜙2

∗𝜙2𝑒−𝑖𝐸2𝑡 ℏ⁄ 𝑑𝑣

= 𝑎1 ∫ 𝜙2
∗𝑉̂𝜙1𝑒−𝑖𝐸1𝑡 ℏ⁄ 𝑑𝑣 + 𝑎2 ∫ 𝜙2

∗𝑉̂𝜙2𝑒−𝑖𝐸2𝑡 ℏ⁄ 𝑑𝑣 

or, 𝑖ℏ
𝑑𝑎1

𝑑𝑡
𝑒−𝑖𝐸1𝑡 ℏ⁄ ⟨𝜙2|𝜙1⟩ + 𝑖ℏ

𝑑𝑎2

𝑑𝑡
𝑒−𝑖𝐸2𝑡 ℏ⁄ ⟨𝜙2|𝜙2⟩ = 𝑎1𝑒−𝑖𝐸1𝑡 ℏ⁄ ⟨𝜙2|𝑉̂|𝜙1⟩ + 𝑎2𝑒−𝑖𝐸2𝑡 ℏ⁄ ⟨𝜙2|𝑉̂|𝜙2⟩ (4) 

Note that, ⟨𝜙2|𝜙1⟩ = 0 and ⟨𝜙2|𝜙2⟩ = 1, since any 𝜙𝑖 is an eigenfunction of the unperturbed Hamiltonian 
and the set of functions {𝜙𝑛} forms an orthonormal set. From (4), we therefore have, 

𝑖ℏ
𝑑𝑎2

𝑑𝑡
𝑒−𝑖𝐸2𝑡 ℏ⁄ = 𝑎1𝑒−𝑖𝐸1𝑡 ℏ⁄ ⟨𝜙2|𝑉̂|𝜙1⟩ + 𝑎2𝑒−𝑖𝐸2𝑡 ℏ⁄ ⟨𝜙2|𝑉̂|𝜙2⟩ 
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Application to a two-level system 
Let us think of an atom/molecule, which, for simplicity, we will treat as a two-level system to maintain a 
simplicity of our formal treatment. The system is initially isolated (no interatomic/intermolecular 
interactions), and is kept in the dark (no interaction with light/electromagnetic waves). Such an initial state 

of the system is defined well by the zeroth-order/unperturbed Hamiltonian 𝐻̂0 and satisfies the Schrödinger 
equation 

𝑖ℏ
𝜕𝜓

𝜕𝑡
= 𝐻̂0𝜓 (7.1) 

The solutions of the above equation  are the stationary states 

𝜓𝑛(𝑟, 𝑡) = 𝜙𝑛(𝑟)𝑒−𝑖𝐸𝑛𝑡 ℏ⁄  
such that, 𝐻̂0𝜙𝑛(𝑟) = 𝐸𝑛𝜙𝑛(𝑟), with the property that 

𝜓𝑛
∗ (𝑟, 𝑡)𝜓𝑛(𝑟, 𝑡) = 𝜙𝑛

∗(𝑟)𝑒𝑖𝐸𝑛𝑡 ℏ⁄ 𝜙𝑛(𝑟)𝑒−𝑖𝐸𝑛𝑡 ℏ⁄ = 𝜙𝑛
∗(𝑟)𝜙𝑛(𝑟) ⇒ |𝜓𝑛(𝑟, 𝑡)|2 = |𝜙𝑛(𝑟)|2 

Now let us consider the interaction of this system with light/electromagnetic radiation (of optical range, UV 

to IR, with the wavelength spanning from ~103Å to ~107Å), having an electric field ℇ⃗⃗⃗ and a magnetic field 

𝐵⃗⃗. Since the interaction of the atomic/molecular electrons with ℇ⃗⃗⃗ is much stronger than all other interactions, 
we take into consideration this interaction only, and treat all others as hyperfine interactions. A typical 

molecule has a dimension of a few Å. Hence, for all practical purposes, light is assumed to be homogeneous 
in every part of the molecule. For a monochromatic light of frequency 𝜈, 

ℇ⃗⃗⃗ = ℇ⃗⃗⃗0 cos(2𝜋𝜈𝑡) = ℇ⃗⃗⃗0 cos 𝜔𝑡 

The electrons of the atom/molecule interact with ℇ⃗⃗⃗ of light along the direction of ℇ⃗⃗⃗. Say, 𝑓(𝑟, 𝑡) is the 
electrical potential of the electric field at a point 𝑟 in space. Hence, 𝑓(𝑟, 𝑡) is given by the scalar product 

𝑓(𝑟, 𝑡) = −𝑟 ⋅ ℇ⃗⃗⃗ 

If 𝑉(𝑟, 𝑡) is the potential energy of interaction of a point charge 𝑞 with the electric field ℇ⃗⃗⃗, then 
𝑉(𝑟, 𝑡) = 𝑞𝑓(𝑟, 𝑡) 

However, our system is essentially a system of such point charges (electrons), and 

𝑉(𝑟, 𝑡) = ∑ 𝑞𝑖

𝑖

𝑓𝑖(𝑟, 𝑡) = ∑ 𝑞𝑖

𝑖

(−𝑟 ⋅ ℇ⃗⃗⃗) = − ∑ 𝑞𝑖

𝑖

𝑟𝑖 ⋅ ℇ⃗⃗⃗ = − ∑ 𝜇𝑖

𝑖

⋅ ℇ⃗⃗⃗ 

Hence, for our treatment, the light source acts as the perturbation, and the corresponding perturbation 

potential has the form 𝑉̂(𝑟, 𝑡) = −𝜇 ⋅ ℇ⃗⃗⃗. We assume that we switch on the light source (perturbation) at 𝑡 =

0, and that 𝑉̂(𝑟, 𝑡) acts as a small perturbation, so that the time-dependent perturbation theory is applicable. 
Therefore, at all times 𝑡 ≥ 0, the Hamiltonian for the system becomes 

𝐻̂ = 𝐻̂0 + 𝑉̂(𝑟, 𝑡) at 𝑡 ≥ 0 
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We also recall that; the unperturbed system is defined by (7.1) in a manner such that 𝐻̂0𝜙𝑛(𝑟) = 𝐸𝑛𝜙𝑛(𝑟) 

and the stationary states are given by 𝜓𝑛(𝑟, 𝑡) = 𝜙𝑛(𝑟)𝑒−𝑖𝐸𝑛𝑡 ℏ⁄ . Our system has an infinite number of 
stationary states, and {𝜙𝑛(𝑟)} spans a complete orthonormal set of functions. To preserve the simplicity of 
our derivation, we assume that our molecule has only two stationary states, 𝜓1(𝑟, 𝑡) and 𝜓2(𝑟, 𝑡), such that, 

𝜓1(𝑟, 𝑡) = 𝜙1(𝑟)𝑒−𝑖𝐸1𝑡 ℏ⁄ , 𝜓2(𝑟, 𝑡) = 𝜙2(𝑟)𝑒−𝑖𝐸2𝑡 ℏ⁄  
𝜙1(𝑟) and 𝜙2(𝑟) are the eigenfunctions of 𝐻̂0. We solve 

𝑖ℏ
𝜕𝜓

𝜕𝑡
= 𝐻̂𝜓 

Does the Schrödinger equation get satisfied with 𝐻̂0 and the above forms of 𝜓1(𝑟, 𝑡) and 𝜓2(𝑟, 𝑡)? 

Let us check with 𝜓1(𝑟, 𝑡), where 𝜓1(𝑟, 𝑡) = 𝜙1(𝑟)𝑒−𝑖𝐸1𝑡 ℏ⁄ . Hence, 

𝑖ℏ
𝜕

𝜕𝑡
𝜙1(𝑟)𝑒−𝑖𝐸1𝑡 ℏ⁄ = 𝐻̂0𝜙1(𝑟)𝑒−𝑖𝐸1𝑡 ℏ⁄  

∴ LHS = 𝑖ℏ𝜙1(𝑟)𝑒−𝑖𝐸1𝑡 ℏ⁄ (−
𝑖𝐸1

ℏ
) = 𝐸1𝜙1(𝑟)𝑒−𝑖𝐸1𝑡 ℏ⁄  and RHS = 𝐸1𝜙1(𝑟)𝑒−𝑖𝐸1𝑡 ℏ⁄  

⇒ LHS = RHS 
One may verify with 𝜙2(𝑟) in the same manner. 

Say, the system is initially (at 𝑡 = 0) in state 𝜓1. Hence, the initial state wavefunction for the system is given 
by 𝜓1(𝑟, 𝑡). At 𝑡 = 0, the light source is switched on. For any time 𝑡 ≥ 0, 𝜓1(𝑟, 𝑡) is not an eigenfunction of 

𝐻̂. Say, at 𝑡 ≥ 0, the wavefunction has the form 
𝜓(𝑟, 𝑡) = 𝑎1(𝑡)𝜓1(𝑟, 𝑡) + 𝑎2(𝑡)𝜓2(𝑟, 𝑡) (7.2) 

where 𝑎1 and 𝑎2 are the combining coefficients and are functions of 𝑡 only, while 𝜓1, 𝜓2 and 𝑉̂ are functions 
of both space and time. We note that, any 𝑎𝑖

∗(𝑡)𝑎𝑖(𝑡) = |𝑎𝑖(𝑡)|2 gives the probability of finding the system 
in any state 𝑖.  

∴ 𝑖ℏ
𝜕𝜓

𝜕𝑡
= 𝐻̂𝜓, 𝐻̂ = 𝐻̂0 + 𝑉̂(𝑟, 𝑡), 𝑉̂(𝑟, 𝑡) = −𝜇 ⋅ ℇ⃗⃗⃗ at 𝑡 ≥ 0 

With the wavefunction defined by (7.2), substitution in the Schrödinger equation gives, 

𝑖ℏ
𝜕

𝜕𝑡
[𝑎1(𝑡)𝜓1(𝑟, 𝑡) + 𝑎2(𝑡)𝜓2(𝑟, 𝑡)] = [𝐻̂0 + 𝑉̂(𝑟, 𝑡)][𝑎1(𝑡)𝜓1(𝑟, 𝑡) + 𝑎2(𝑡)𝜓2(𝑟, 𝑡)] 

or, 𝑖ℏ [
𝑑𝑎1

𝑑𝑡
𝜓1 + 𝑎1

𝜕𝜓1

𝜕𝑡
+

𝑑𝑎2

𝑑𝑡
𝜓2 + 𝑎2

𝜕𝜓2

𝜕𝑡
] = 𝑎1𝐻̂0𝜓1 + 𝑉̂𝑎1𝜓1 + 𝑎2𝐻̂0𝜓2 + 𝑉̂𝑎2𝜓2 (7.3) 

Now, 

𝑖ℏ
𝜕𝜓1(𝑟, 𝑡)

𝜕𝑡
= 𝐻̂0𝜓1(𝑟, 𝑡) 

∴ 𝑎1𝑖ℏ
𝜕𝜓1(𝑟, 𝑡)

𝜕𝑡
= 𝑎1𝐻̂0𝜓1(𝑟, 𝑡) 

and 
𝑖ℏ

𝜕𝜓2(𝑟, 𝑡)

𝜕𝑡
= 𝐻̂0𝜓2(𝑟, 𝑡) 

∴ 𝑎2𝑖ℏ
𝜕𝜓2(𝑟, 𝑡)

𝜕𝑡
= 𝑎2𝐻̂0𝜓2(𝑟, 𝑡) 

From (7.3), 

𝑖ℏ
𝑑𝑎1

𝑑𝑡
𝜓1 + 𝑎1𝑖ℏ

𝜕𝜓1

𝜕𝑡
+ 𝑖ℏ

𝑑𝑎2

𝑑𝑡
𝜓2 + 𝑎2𝑖ℏ

𝜕𝜓2

𝜕𝑡
= 𝑎1𝐻̂0𝜓1 + 𝑉̂𝑎1𝜓1 + 𝑎2𝐻̂0𝜓2 + 𝑉̂𝑎2𝜓2 

or, 𝑖ℏ
𝑑𝑎1

𝑑𝑡
𝜓1 + 𝑎1𝐻̂0𝜓1 + 𝑖ℏ

𝑑𝑎2

𝑑𝑡
𝜓2 + 𝑎2𝐻̂0𝜓2 = 𝑎1𝐻̂0𝜓1 + 𝑉̂𝑎1𝜓1 + 𝑎2𝐻̂0𝜓2 + 𝑉̂𝑎2𝜓2 

or, 𝑖ℏ
𝑑𝑎1

𝑑𝑡
𝜓1 + 𝑖ℏ

𝑑𝑎2

𝑑𝑡
𝜓2 = 𝑉̂𝑎1𝜓1 + 𝑉̂𝑎2𝜓2 

or, 𝑖ℏ [
𝑑𝑎1

𝑑𝑡
𝜓1 +

𝑑𝑎2

𝑑𝑡
𝜓2] = 𝑉̂𝑎1𝜓1 + 𝑉̂𝑎2𝜓2 

Left multiplication of the above equation by 𝜙2
∗(𝑟), followed by an integration over all space gives 

𝑖ℏ
𝑑𝑎1

𝑑𝑡
∫ 𝜙2

∗𝜓1 𝑑𝑣 + 𝑖ℏ
𝑑𝑎2

𝑑𝑡
∫ 𝜙2

∗𝜓2 𝑑𝑣 = 𝑎1 ∫ 𝜙2
∗𝑉̂𝜓1 𝑑𝑣 + 𝑎2 ∫ 𝜙2

∗𝑉̂𝜓2 𝑑𝑣 

or, 𝑖ℏ
𝑑𝑎1

𝑑𝑡
∫ 𝜙2

∗𝜙1𝑒−𝑖𝐸1𝑡 ℏ⁄ 𝑑𝑣 + 𝑖ℏ
𝑑𝑎2

𝑑𝑡
∫ 𝜙2

∗𝜙2𝑒−𝑖𝐸2𝑡 ℏ⁄ 𝑑𝑣

= 𝑎1 ∫ 𝜙2
∗𝑉̂𝜙1𝑒−𝑖𝐸1𝑡 ℏ⁄ 𝑑𝑣 + 𝑎2 ∫ 𝜙2

∗𝑉̂𝜙2𝑒−𝑖𝐸2𝑡 ℏ⁄ 𝑑𝑣 
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or, 𝑖ℏ
𝑑𝑎1

𝑑𝑡
𝑒−𝑖𝐸1𝑡 ℏ⁄ ⟨𝜙2|𝜙1⟩ + 𝑖ℏ

𝑑𝑎2

𝑑𝑡
𝑒−𝑖𝐸2𝑡 ℏ⁄ ⟨𝜙2|𝜙2⟩ = 𝑎1𝑒−𝑖𝐸1𝑡 ℏ⁄ ⟨𝜙2|𝑉̂|𝜙1⟩ + 𝑎2𝑒−𝑖𝐸2𝑡 ℏ⁄ ⟨𝜙2|𝑉̂|𝜙2⟩ (7.4) 

Note that, ⟨𝜙2|𝜙1⟩ = 0 and ⟨𝜙2|𝜙2⟩ = 1, since any 𝜙𝑖 is an eigenfunction of the unperturbed Hamiltonian 
and the set of functions {𝜙𝑛} forms an orthonormal set. From (7.4), we therefore have, 

𝑖ℏ
𝑑𝑎2

𝑑𝑡
𝑒−𝑖𝐸2𝑡 ℏ⁄ = 𝑎1𝑒−𝑖𝐸1𝑡 ℏ⁄ ⟨𝜙2|𝑉̂|𝜙1⟩ + 𝑎2𝑒−𝑖𝐸2𝑡 ℏ⁄ ⟨𝜙2|𝑉̂|𝜙2⟩ 

Since the system was initially in the state 𝜓1, 𝑎1(𝑡 = 0) = 𝑎1(0) = 1 and 𝑎2(𝑡 = 0) = 𝑎2(0) = 0. Also, as 
the perturbation is small, the values of 𝑎1 and 𝑎2 at any time 𝑡 ≥ 0 do not differ much from their values at 
𝑡 = 0 (when there was no perturbation). 

∴ 𝑖ℏ
𝑑𝑎2

𝑑𝑡
= 𝑒𝑖(𝐸2−𝐸1)𝑡 ℏ⁄ ⟨𝜙2|𝑉̂|𝜙1⟩ with 𝑉̂(𝑟, 𝑡) = −𝜇 ⋅ ℇ⃗⃗⃗ 

or, 𝑖ℏ
𝑑𝑎2

𝑑𝑡
= −𝑒𝑖(𝐸2−𝐸1)𝑡 ℏ⁄ ⟨𝜙2|𝜇 ⋅ ℇ⃗⃗⃗|𝜙1⟩ 

or, 𝑖ℏ
𝑑𝑎2

𝑑𝑡
= −𝑒𝑖(𝐸2−𝐸1)𝑡 ℏ⁄ ⟨𝜙2|𝜇 ⋅ ℇ⃗⃗⃗0 cos(2𝜋𝜈𝑡) |𝜙1⟩ 

or, 𝑖ℏ
𝑑𝑎2

𝑑𝑡
= −𝑒𝑖(𝐸2−𝐸1)𝑡 ℏ⁄ cos(2𝜋𝜈𝑡) ⟨𝜙2|𝜇 ⋅ ℇ⃗⃗⃗0|𝜙1⟩ 

Let us consider the 𝑧-component of the electric field only, so that 

𝑖ℏ
𝑑𝑎2

𝑑𝑡
= −𝑒𝑖(𝐸2−𝐸1)𝑡 ℏ⁄ cos(2𝜋𝜈𝑡) ⟨𝜙2|𝜇𝑧ℰ0𝑧|𝜙1⟩ 

For a constant electric field, ℰ0𝑧 is a constant, and may be taken out of the integral, giving 

𝑖ℏ
𝑑𝑎2

𝑑𝑡
= −𝑒𝑖(𝐸2−𝐸1)𝑡 ℏ⁄ cos(2𝜋𝜈𝑡) ℰ0𝑧⟨𝜙2|𝜇𝑧|𝜙1⟩ 

Say, we define ⟨𝜙2|𝜇𝑧|𝜙1⟩ = (𝜇𝑧)21, the transition dipole moment integral for the transition 1 → 2. 

∴ 𝑖ℏ
𝑑𝑎2

𝑑𝑡
= −𝑒𝑖(𝐸2−𝐸1)𝑡 ℏ⁄ cos(2𝜋𝜈𝑡) ℰ0𝑧(𝜇𝑧)21 (7.5) 

Now, 𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃 and 𝑒−𝑖𝜃 = cos 𝜃 − 𝑖 sin 𝜃, so that, 𝑒𝑖𝜃 + 𝑒−𝑖𝜃 = 2 cos 𝜃.  

∴ cos 𝜃 =
1

2
(𝑒𝑖𝜃 + 𝑒−𝑖𝜃) 

From (7.5), we have 

𝑖ℏ
𝑑𝑎2

𝑑𝑡
= −

1

2
(𝜇𝑧)21ℰ0𝑧(𝑒𝑖2𝜋𝜈𝑡 + 𝑒−𝑖2𝜋𝜈𝑡)𝑒𝑖(𝐸2−𝐸1)𝑡 ℏ⁄  

𝑖ℏ
𝑑𝑎2

𝑑𝑡
= −

1

2
(𝜇𝑧)21ℰ0𝑧(𝑒𝑖2𝜋𝜈𝑡 + 𝑒−𝑖2𝜋𝜈𝑡)𝑒𝑖(𝐸2−𝐸1)𝑡 ℏ⁄  

or, 𝑖ℏ
𝑑𝑎2

𝑑𝑡
= −

1

2
(𝜇𝑧)21ℰ0𝑧(𝑒𝑖ℎ𝜈𝑡 ℏ⁄ + 𝑒−𝑖ℎ𝜈𝑡 ℏ⁄ )𝑒𝑖(𝐸2−𝐸1)𝑡 ℏ⁄  

or, 𝑖ℏ
𝑑𝑎2

𝑑𝑡
= −

1

2
(𝜇𝑧)21ℰ0𝑧[exp{𝑖(𝐸2 − 𝐸1 + ℎ𝜈)𝑡 ℏ⁄ } + exp{𝑖(𝐸2 − 𝐸1 − ℎ𝜈)𝑡 ℏ⁄ }] 

or, 𝑖ℏ𝑑𝑎2 = −
1

2
(𝜇𝑧)21ℰ0𝑧[exp{𝑖(𝐸2 − 𝐸1 + ℎ𝜈)𝑡 ℏ⁄ } + exp{𝑖(𝐸2 − 𝐸1 − ℎ𝜈)𝑡 ℏ⁄ }]𝑑𝑡 

Integrating from 0 to 𝑡′, 

𝑖ℏ[𝑎2(𝑡′) − 𝑎2(0)] = −
1

2
(𝜇𝑧)21ℰ0𝑧 [

exp{𝑖(𝐸2 − 𝐸1 + ℎ𝜈)𝑡 ℏ⁄ }

𝑖(𝐸2 − 𝐸1 + ℎ𝜈) ℏ⁄
+

exp{𝑖(𝐸2 − 𝐸1 − ℎ𝜈)𝑡 ℏ⁄ }

𝑖(𝐸2 − 𝐸1 − ℎ𝜈) ℏ⁄
]

0

𝑡′

 

Now, 𝑎2(0) = 𝑎2(𝑡 = 0) = 0, since the system was initially in the state 𝜓1. 

∴ 𝑖ℏ𝑎2(𝑡′) = −
1

2
(𝜇𝑧)21ℰ0𝑧 (

ℏ

𝑖
) [

exp{𝑖(𝐸2 − 𝐸1 + ℎ𝜈)𝑡 ℏ⁄ }

𝐸2 − 𝐸1 + ℎ𝜈
+

exp{𝑖(𝐸2 − 𝐸1 − ℎ𝜈)𝑡 ℏ⁄ }

𝐸2 − 𝐸1 − ℎ𝜈
]

0

𝑡′

 

or, 𝑎2(𝑡′) =
1

2
(𝜇𝑧)21ℰ0𝑧 [

exp{𝑖(𝐸2 − 𝐸1 + ℎ𝜈)𝑡 ℏ⁄ }

𝐸2 − 𝐸1 + ℎ𝜈
+

exp{𝑖(𝐸2 − 𝐸1 − ℎ𝜈)𝑡 ℏ⁄ }

𝐸2 − 𝐸1 − ℎ𝜈
]

0

𝑡′

  

or, 𝑎2(𝑡′) =
1

2
(𝜇𝑧)21ℰ0𝑧 [

exp{𝑖(𝐸2 − 𝐸1 + ℎ𝜈)𝑡′ ℏ⁄ } − 1

𝐸2 − 𝐸1 + ℎ𝜈
+

exp{𝑖(𝐸2 − 𝐸1 − ℎ𝜈)𝑡′ ℏ⁄ } − 1

𝐸2 − 𝐸1 − ℎ𝜈
] (7.6) 
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The transition 1 → 2 takes place only when 𝐸2 − 𝐸1 ≈ ℎ𝜈 (the Bohr frequency condition, or the resonance 
condition, in spectroscopy). Under this condition, the second term within the square brackets on the RHS of 
(7.6) is the dominant term, and is in magnitude much larger as compared to the other term.  

∴ 𝑎2(𝑡′) ≈
1

2
(𝜇𝑧)21ℰ0𝑧 [

exp{𝑖(𝐸2 − 𝐸1 − ℎ𝜈)𝑡′ ℏ⁄ } − 1

𝐸2 − 𝐸1 − ℎ𝜈
] 

or, |𝑎2(𝑡′)|2 ≈
1

4
(𝜇𝑧)21

2 ℰ0𝑧
2

|exp{𝑖(𝐸2 − 𝐸1 − ℎ𝜈)𝑡′ ℏ⁄ } − 1|2

(𝐸2 − 𝐸1 − ℎ𝜈)2
 (7.7) 

Now, |𝑎2(𝑡′)|2 gives the probability of finding the system in the state 2 as a result of the transition 1 → 2. 

Now, to simplify (7.7), we use the following identity. 

|𝑒𝑖𝜃 − 1|
2

= (𝑒𝑖𝜃 − 1)
∗
(𝑒𝑖𝜃 − 1) = (𝑒−𝑖𝜃 − 1)(𝑒𝑖𝜃 − 1) = (1 − 𝑒𝑖𝜃)(1 − 𝑒−𝑖𝜃) 

or, |𝑒𝑖𝜃 − 1|
2

= 1 − 𝑒−𝑖𝜃 − 𝑒𝑖𝜃 + 1 = 2 − (𝑒𝑖𝜃 + 𝑒−𝑖𝜃) = 2 − 2 cos 𝜃 = 2(1 − cos 𝜃) 

or, |𝑒𝑖𝜃 − 1|
2

= 2 × 2 sin2(𝜃 2⁄ ) = 4 sin2(𝜃 2⁄ ) 

Hence, from (7.7), we have 

|𝑎2(𝑡′)|2 ≈
1

4
(𝜇𝑧)21

2 ℰ0𝑧
2

4 sin2[(𝐸2 − 𝐸1 − ℎ𝜈)𝑡′ 2ℏ⁄ ]

(𝐸2 − 𝐸1 − ℎ𝜈)2
= (𝜇𝑧)21

2 ℰ0𝑧
2

sin2[(𝐸2 − 𝐸1 − ℎ𝜈)𝑡′ 2ℏ⁄ ]

(𝐸2 − 𝐸1 − ℎ𝜈)2
 (7.8) 

We will use (7.8), or one of its more general forms, to understand the intensities of spectroscopic transitions. 
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From our previous discussions, we have seen that 

|𝑎2(𝑡′)|2 ≈
1

4
(𝜇𝑧)21

2 ℰ0𝑧
2

4 sin2[(𝐸2 − 𝐸1 − ℎ𝜈)𝑡′ 2ℏ⁄ ]

(𝐸2 − 𝐸1 − ℎ𝜈)2
= (𝜇𝑧)21

2 ℰ0𝑧
2

sin2[(𝐸2 − 𝐸1 − ℎ𝜈)𝑡′ 2ℏ⁄ ]

(𝐸2 − 𝐸1 − ℎ𝜈)2
  

We may simplify the above expression to get 

|𝑎2(𝑡′)|2 = (𝜇𝑧)21
2 (ℰ0𝑧 ℏ⁄ )2

sin2[(𝜔21 − 𝜔)𝑡′ 2⁄ ]

(𝜔21 − 𝜔)2
, where (𝜇𝑧)21 = ⟨𝜙2|𝜇𝑧|𝜙1⟩ 

We recall that the integral (𝜇𝑧)21 = ⟨𝜙2|𝜇𝑧|𝜙1⟩ appears from the integral over the perturbation, as 
emphasized in our earlier discussions. Now, generalizing |𝑎2(𝑡′)|2 for any arbitrary situation, 

|𝑐𝑚(𝑡′)|2 ≅
ℰ0

2

ℏ2
|𝐻𝑚𝑛

′ |2
sin2[(𝜔𝑚𝑛 − 𝜔)𝑡′ 2⁄ ]

[(𝜔𝑚𝑛 − 𝜔)]2
=

ℰ0
2

4ℏ2
|𝐻𝑚𝑛

′ |2
sin2[(𝜔𝑚𝑛 − 𝜔)𝑡′ 2⁄ ]

[(𝜔𝑚𝑛 − 𝜔) 2⁄ ]2
 

|𝑐𝑚(𝑡′)|2 is the probability that the system is in the state |𝑚⟩ as a consequence of the 𝑛 → 𝑚 transition. 
Before we proceed further, let us recall a few things that we have already seen, and think over what we have 
done so far: 
(a) The treatment is able to explain stimulated absorption (𝜔𝑚𝑛 = 𝜔). 
(b) The treatment accounts for stimulated emission (𝜔𝑚𝑛 = −𝜔) as well. 
(c) The method adopted by us somehow fails to account for the crucial spontaneous emission. 
(d) For the treatment done so far, we have considered a plane polarized radiation whose electric field 

oscillates along the 𝑥 direction. 
Should we invoke the photon concept, within our description, and make an attempt to explain the 
phenomenon of spontaneous emission? Yes. 
 
To invoke the photon concept of radiation, we will perform certain necessary changes to the relation for the 
probability of absorption, |𝑐𝑚(𝑡′)|2, 

|𝑐𝑚(𝑡′)|2 ≈
ℰ0

2

4ℏ2
|𝐻𝑚𝑛

′ |2
sin2[(𝜔𝑚𝑛 − 𝜔)𝑡′ 2⁄ ]

[(𝜔𝑚𝑛 − 𝜔) 2⁄ ]2
=

ℰ0
2

4
(

|𝐻𝑚𝑛
′ |

ℏ
)

2
sin2[(𝜔𝑚𝑛 − 𝜔)𝑡′ 2⁄ ]

[(𝜔𝑚𝑛 − 𝜔) 2⁄ ]2
 

We recall that, 𝜔𝑚𝑛 = 2𝜋𝜈𝑚𝑛 and 𝜔 = 2𝜋𝜈, so that, 
sin2[(𝜔𝑚𝑛 − 𝜔)𝑡′ 2⁄ ]

[(𝜔𝑚𝑛 − 𝜔) 2⁄ ]2
= 4

sin2[𝜋(𝜈𝑚𝑛 − 𝜈)𝑡′]

4𝜋2(𝜈𝑚𝑛 − 𝜈)2
 

∴ |𝑐𝑚(𝑡′)|2 ≈
ℰ0

2

4
(

|𝐻𝑚𝑛
′ |

ℏ
)

2

4
sin2[𝜋(𝜈𝑚𝑛 − 𝜈)𝑡′]

4𝜋2(𝜈𝑚𝑛 − 𝜈)2
= (

ℰ0|𝐻𝑚𝑛
′ |

ℏ
)

2
sin2[𝜋(𝜈𝑚𝑛 − 𝜈)𝑡′]

4𝜋2(𝜈𝑚𝑛 − 𝜈)2
 

If 𝜌(𝜈) is the energy density of the radiation field (in units of energy per m3), it can be shown that, 

𝜌(𝜈) =
𝜖0

2
ℇ0

2, 

where, 𝜖0 is the permittivity of free space. However, we note that in our treatment we have considered a 
radiation that is 𝑥-polarized and the direction of propagation is along the 𝑧 axis. Thus, in our case, the energy 

density of the radiation field is, 𝜌𝑧(𝜈) = 𝜖0ℇ0
2 2⁄ . 

Therefore, from, 

|𝑐𝑚(𝑡′)|2 ≈ (
ℰ0|𝐻𝑚𝑛

′ |

ℏ
)

2
sin2[𝜋(𝜈𝑚𝑛 − 𝜈)𝑡′]

4𝜋2(𝜈𝑚𝑛 − 𝜈)2
 and  𝜌𝑧(𝜈) = 𝜖0ℇ0

2 2⁄  

we have, 

|𝑐𝑚(𝑡′)|2 ≈
2 𝜌𝑧(𝜈)

𝜖0
(

|𝐻𝑚𝑛
′ |

ℏ
)

2
sin2[𝜋(𝜈𝑚𝑛 − 𝜈)𝑡′]

4𝜋2(𝜈𝑚𝑛 − 𝜈)2
 

We have just said that we have included a subscript 𝑧 on the radiation density, to designate that this is the 
electromagnetic energy density associated with the fraction of the photons moving in the 𝑧 direction. For a 
volume in which the distribution of radiation is isotropic, the density associated with light waves propagating 
forward or backward in any one of the three Cartesian directions is one-third the total radiation density, so 
that 

 𝜌𝑧(𝜈) =
1

3
𝜌(𝜈). 

Therefore, in terms of 𝜌(𝜈), we have, 
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|𝑐𝑚(𝑡′)|2 ≈
2𝜌(𝜈)|𝐻𝑚𝑛

′ |2

3𝜖0ℏ2

sin2[𝜋(𝜈𝑚𝑛 − 𝜈)𝑡′]

4𝜋2(𝜈𝑚𝑛 − 𝜈)2
. 

We now introduce a variable transformation, 𝑥 = 𝜋(𝜈𝑚𝑛 − 𝜈)𝑡′, on 

|𝑐𝑚(𝑡′)|2 ≈
2𝜌(𝜈)|𝐻𝑚𝑛

′ |2

3𝜖0ℏ2

sin2[𝜋(𝜈𝑚𝑛 − 𝜈)𝑡′]

4𝜋2(𝜈𝑚𝑛 − 𝜈)2
, 

to obtain, 

|𝑐𝑚(𝑡′)|2 ≈
𝑡′2

𝜌(𝜈)|𝐻𝑚𝑛
′ |2

6𝜖0ℏ2

sin2 𝑥

𝑥2
. 

 
The function is sharply peaked at 𝑥 = 0. The important contribution is limited to −𝜋 < 𝑥 < 𝜋. Once 𝑡′ is 
larger than 1 |𝜈𝑚𝑛 − 𝜈|⁄ , then |𝑐𝑚(𝑡′)|2 will be quite small. At times longer than this limit, only light of 
frequency 𝜈 ≅ 𝜈𝑚𝑛 will make any contribution to transferring population from state 𝑛 to state m. This leads 
to the statement, first postulated by Bohr in his model of the 𝐻 atom, that an atom will undergo a transition 
from level 𝑛 to level 𝑚 only when exposed to frequency of 𝜈 = (𝐸𝑚 − 𝐸𝑛) ℎ⁄ . However, at very short times, 
absorption can occur over a small, but finite, range of frequencies centered about 𝜈 = 𝜈𝑚𝑛. We now 
integrate the expression for |𝑐𝑚(𝑡′)|2 over all frequencies, and represent it as, ⟨|𝑐𝑚(𝑡′)|2⟩.  

∴ ⟨|𝑐𝑚(𝑡′)|2⟩ =
𝑡′2|𝐻𝑚𝑛

′ |2

6𝜖0ℏ2
∫

𝜌(𝜈)sin2 𝑥

𝑥2

∞

0

𝑑𝜈 
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We now integrate the expression for |𝑐𝑚(𝑡

′)|2 over all frequencies, and represent it as, ⟨|𝑐𝑚(𝑡
′)|2⟩. This will 

give the total contribution of the radiation field of density 𝜌(𝜈) to population transfer into state 𝑚. 

⟨|𝑐𝑚(𝑡
′)|2⟩ =

𝑡′
2|𝐻𝑚𝑛

′ |2

6𝜖0ℏ
2

∫
𝜌(𝜈)sin2 𝑥

𝑥2

∞

0

𝑑𝜈 

We know that, 𝑥 = 𝜋(𝜈𝑚𝑛 − 𝜈)𝑡′ = 𝜋𝜈𝑚𝑛𝑡
′ − 𝜋𝜈𝑡′, so that, 𝑑𝑥 = −𝜋𝑡′𝑑𝜈. 

∴ ⟨|𝑐𝑚(𝑡
′)|2⟩ =

𝑡′
2|𝐻𝑚𝑛

′ |2

6𝜖0ℏ
2

∫
𝜌(𝜈)sin2 𝑥

𝑥2

∞

0

𝑑𝜈 = −
𝑡′
2|𝐻𝑚𝑛

′ |2

6𝜖0ℏ
2

∫
𝜌(𝜈)sin2 𝑥

𝑥2

∞

0

1

𝜋𝑡′
𝑑𝑥 

Note that: When 𝜈 → 0,  𝑥 → 𝜋𝜈𝑚𝑛𝑡
′ and when 𝜈 → ∞,  𝑥 → −∞. 

or,  ⟨|𝑐𝑚(𝑡
′)|2⟩ = −

𝑡′|𝐻𝑚𝑛
′ |2

6𝜋𝜖0ℏ
2

∫
𝜌(𝜈)sin2 𝑥

𝑥2

−∞

𝜋𝜈𝑚𝑛𝑡
′

𝑑𝑥 

Thus, we have, 

⟨|𝑐𝑚(𝑡
′)|2⟩ = −

𝑡′|𝐻𝑚𝑛
′ |2

6𝜋𝜖0ℏ
2

∫
𝜌(𝜈)sin2 𝑥

𝑥2

−∞

𝜋𝜈𝑚𝑛𝑡
′

𝑑𝑥 

Since typical frequencies 𝜈𝑚𝑛 are very large, we may replace the lower limit of integration by +∞. 

⟨|𝑐𝑚(𝑡
′)|2⟩ = −

𝑡′|𝐻𝑚𝑛
′ |2

6𝜋𝜖0ℏ
2

∫
𝜌(𝜈)sin2 𝑥

𝑥2

−∞

+∞

𝑑𝑥 =
𝑡′|𝐻𝑚𝑛

′ |2

6𝜋𝜖0ℏ
2

∫
𝜌(𝜈)sin2 𝑥

𝑥2

+∞

−∞

𝑑𝑥 

We further assume that the photon density is constant over the range sampled by the integral, so that, 
𝜌(𝜈) ≈ 𝜌(𝜈 = 𝜈𝑚𝑛) = 𝜌(𝜈𝑚𝑛), then, we can take the density out from the integral, to get 
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⟨|𝑐𝑚(𝑡
′)|2⟩ =

𝑡′𝜌(𝜈𝑚𝑛)|𝐻𝑚𝑛
′ |2

6𝜋𝜖0ℏ
2

∫
sin2 𝑥

𝑥2

+∞

−∞

𝑑𝑥 =
𝑡′𝜌(𝜈𝑚𝑛)|𝐻𝑚𝑛

′ |2

6𝜋𝜖0ℏ
2

× 𝜋 

so that, 

⟨|𝑐𝑚(𝑡
′)|2⟩ =

𝑡′𝜌(𝜈𝑚𝑛)|𝐻𝑚𝑛
′ |2

6𝜖0ℏ
2

,  since, ∫
sin2 𝑥

𝑥2

+∞

−∞

𝑑𝑥 = 𝜋 

Thus, we have, 

⟨|𝑐𝑚(𝑡
′)|2⟩ =

𝑡′𝜌(𝜈𝑚𝑛)|𝐻𝑚𝑛
′ |2

6𝜖0ℏ
2

.   

The derivative of the population in state 𝑚 with respect to time is the rate at which the light field populates 
level 𝑚 starting with the system in level 𝑛. This rate is proportional to the radiation density at frequency 𝜈 =
𝜈𝑚𝑛. The constant of proportionality, called the Einstein 𝑩 coefficient, is 

𝐵𝑚𝑛 =
|𝐻𝑚𝑛

′ |2

6𝜖0ℏ
2
. 

If level 𝑚 lies higher than level 𝑛, then this 𝐵 coefficient is the rate for stimulated absorption (absorption of 
energy stimulated by the electromagnetic field). It is proportional to the square of the matrix element of the 
dipole operator between states 𝑛 and 𝑚. Since the absolute value squared of the matrix element of any 
physical operator is independent of the order of the initial and final states, it is also clear that the rate of 
stimulated absorption (level 𝑛 to level 𝑚) is identical to the rate of stimulated emission (level 𝑚 to level 𝑛). 
Let the total number of molecules in levels 𝑛 and 𝑚 be 𝑁𝑛 and 𝑁𝑚. The overall rate of stimulated absorption 
(energy absorbed per unit time) is 

𝑁𝑛𝜌(𝜈𝑚𝑛)𝐵𝑚𝑛 
while the overall rate of stimulated emission (energy emitted per unit time) is 

𝑁𝑚𝜌(𝜈𝑛𝑚)𝐵𝑛𝑚 
Obviously, 𝜌(𝜈𝑚𝑛) = 𝜌(𝜈𝑛𝑚). However, equilibrium statistical mechanics demonstrates that the number of 
molecules in the lower state must be larger than the number in a higher state. Specifically, at equilibrium 

𝑁𝑚 𝑁𝑛⁄ = exp(−ℎ𝜈𝑚𝑛 𝑘𝐵⁄ 𝑇). 
Since the number of molecules in the lower energy state is greater, the overall rate of stimulated absorption 
will be greater than the overall rate of stimulated emission, so that, eventually, the number of molecules in 
the two states will equilibrate, which is contrary to the predictions of equilibrium statistical mechanics. To 
resolve this paradox, Einstein proposed the existence of another process, spontaneous emission. He 
postulated that there exists a small probability for an excited molecule (or atom) to release a photon even 
in the absence of an electromagnetic field. The rate of spontaneous emission, which is denoted 𝐴𝑛𝑚, will be 
thus independent of the energy density of the radiation field. Therefore, the total rate of energy emission 
from the upper state is 𝑁𝑚𝜌(𝜈𝑛𝑚)𝐵𝑛𝑚 + 𝐴𝑛𝑚𝑁𝑚 = 𝑁𝑚[𝐴𝑛𝑚 + 𝜌(𝜈𝑛𝑚)𝐵𝑛𝑚]. This must be equal to the 
overall rate of energy absorption from the lower state, given by 

𝑁𝑛𝜌(𝜈𝑚𝑛)𝐵𝑚𝑛, 
that is, 𝑁𝑚[𝐴𝑛𝑚 + 𝜌(𝜈𝑛𝑚)𝐵𝑛𝑚] = 𝑁𝑛𝜌(𝜈𝑚𝑛)𝐵𝑚𝑛, where we make the notations to make them even more 
explicit (to avoid any confusion), and express as, 𝑁𝑚[𝐴𝑛←𝑚 + 𝜌(𝜈𝑛←𝑚)𝐵𝑛←𝑚] = 𝑁𝑛𝜌(𝜈𝑚←𝑛)𝐵𝑚←𝑛. The 
system we are dealing with is essentially a two-level system with the ground state 𝐸𝑛 and an excited state 
𝐸𝑚. 𝐸𝑚 − 𝐸𝑛 ≫ 𝑘𝐵𝑇 ⇒ thermal energy is insufficient for a 𝑛 → 𝑚 transition. 
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What are the units of Einstein 𝐴 and 𝐵 coefficients? Rate of spontaneous emission, 

−
𝑑𝑁𝑚(𝑡)

𝑑𝑡
= 𝐴𝑛←𝑚𝑁𝑚(𝑡) 

so that, 

𝐴𝑛←𝑚 = −(
1

𝑁𝑚(𝑡)
) (

𝑑𝑁𝑚(𝑡)

𝑑𝑡
) ⇝ number−1 × number ⋅ second−1 = s−1. 

Thus, spontaneous emission behaves like a first-order process. Similarly, for the stimulated emission, the rate 
equation is, 

−
𝑑𝑁𝑚(𝑡)

𝑑𝑡
= 𝐵𝑛←𝑚𝜌(𝜈𝑛←𝑚)𝑁𝑚(𝑡) ⇒ 𝐵𝑛←𝑚 = −(

1

𝜌(𝜈𝑛←𝑚)𝑁𝑚(𝑡)
) (

𝑑𝑁𝑚(𝑡)

𝑑𝑡
)

⇝ (
1

J ⋅ m−3 ⋅ second × number
) (

number

second
) = J−1m3s−2 = N−1m−1m3s−2

= (kg m s−2)−1m−1m3s−2 = m kg−1. 
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In the same manner, 𝐵𝑚←𝑛 ⇝ m kg−1. How are the three Einstein coefficients, 𝐵𝑛←𝑚,  𝐴𝑛←𝑚 and 𝐵𝑚←𝑛 
related? A relationship between these three can be determined in the limit at which the states 𝐸𝑛 and 𝐸𝑚 
are in thermal equilibrium, in which case neither 𝑁𝑛, nor 𝑁𝑚 evolve/vary in time. 

−
𝑑𝑁𝑛(𝑡)

𝑑𝑡
=

𝑑𝑁𝑚(𝑡)

𝑑𝑡
= 0 

and 𝜌(𝜈𝑚←𝑛) = 𝜌(𝜈𝑛←𝑚) = 𝜌(𝜈) is the equilibrium spectral radiant energy density. We can assume that 
𝜌(𝜈) comes from a thermal blackbody radiation source. Therefore, 

𝜌(𝜈) =
8𝜋ℎ

𝑐3

𝜈3

𝑒ℎ𝜈 𝑘𝐵⁄ 𝑇 − 1
 

Under the condition of thermal equilibrium, 
𝑁𝑚[𝐴𝑛←𝑚 + 𝜌(𝜈𝑛←𝑚)𝐵𝑛←𝑚] = 𝑁𝑛𝜌(𝜈𝑚←𝑛)𝐵𝑚←𝑛, 

that is, 
𝑁𝑚[𝐴𝑛←𝑚 + 𝜌(𝜈)𝐵𝑛←𝑚] = 𝑁𝑛𝜌(𝜈)𝐵𝑚←𝑛 ⇒ 𝑁𝑚𝐴𝑛←𝑚 = 𝜌(𝜈)[𝑁𝑛𝐵𝑚←𝑛 − 𝑁𝑚𝐵𝑛←𝑚], 

so that, 

𝜌(𝜈) =
𝑁𝑚𝐴𝑛←𝑚

𝑁𝑛𝐵𝑚←𝑛 − 𝑁𝑚𝐵𝑛←𝑚
⇒ 𝜌(𝜈) =

𝐴𝑛←𝑚

(𝑁𝑛 𝑁𝑚⁄ )𝐵𝑚←𝑛 − 𝐵𝑛←𝑚
 

From Boltzmann distribution (for a system in equilibrium at temperature 𝑇), we have, 
𝑁𝑚

𝑁𝑛
= 𝑒−(𝐸𝑚−𝐸𝑛)/𝑘𝐵𝑇 = 𝑒−ℎ𝜈/𝑘𝐵𝑇 ⇒

𝑁𝑛

𝑁𝑚
= 𝑒ℎ𝜈/𝑘𝐵𝑇 

∴ 𝜌(𝜈) =
𝐴𝑛←𝑚

𝐵𝑚←𝑛𝑒ℎ𝜈/𝑘𝐵𝑇 − 𝐵𝑛←𝑚
 

The only way that,  

𝜌(𝜈) =
8𝜋ℎ

𝑐3

𝜈3

𝑒ℎ𝜈 𝑘𝐵⁄ 𝑇 − 1
 and 𝜌(𝜈) =

𝐴𝑛←𝑚

𝐵𝑚←𝑛𝑒ℎ𝜈/𝑘𝐵𝑇 − 𝐵𝑛←𝑚
 

is to have, 𝐵𝑚←𝑛 = 𝐵𝑛←𝑚 = 𝐵 and  

𝐴 = 𝐴𝑛←𝑚 =
8𝜋ℎ𝜈3

𝑐3
𝐵 

Note that, the 𝐴 coefficient depends on the cube of the frequency. Spontaneous emission is much more 
probable for ultraviolet transitions than for microwave transitions. 
It can be shown that, 

• the two-level system is unable to achieve a population inversion, while 
• for a three-level system a population inversion can be true. 

We will return to these issues when we discuss the LASERs. Therefore, we conclude that for any transition 
from an initial (𝑖) to a final (𝑓) state, we have, 

𝐵𝑚𝑛 =
|𝐻𝑚𝑛

′ |2

6𝜖0ℏ
2

     and     𝐴𝑚𝑛 =
8𝜋ℎ𝜈𝑚𝑛

3

𝑐3
𝐵𝑚𝑛     (with 𝐵𝑚𝑛 = 𝐵𝑛𝑚) 

 
Selection Rules: Transitions Within the Same Electronic State 
Both the Einstein 𝐴 and 𝐵 coefficients depend on the square of the matrix element of the dipole-moment 
operator. The dipole-moment operator, 𝜇̂𝑥, as defined earlier, is used to calculate the transition dipole 
integral, ⟨𝜓𝑚|𝜇̂𝑥|𝜓𝑛⟩. 
 
Case-1: Electric-dipole selection rules for a particle of charge 𝑞 in a one-dimensional box. 

⟨𝜓𝑚|𝜇̂𝑥|𝜓𝑛⟩ = 𝑞 ∫(
2

𝐿
)

𝐿

0

𝑥 sin (
𝑚𝜋𝑥

𝐿
) sin (

𝑛𝜋𝑥

𝐿
)𝑑𝑥 

Note that: 

∫𝑥 sin(𝑎𝑥) sin(𝑏𝑥) 𝑑𝑥 =
cos[(𝑎 − 𝑏)𝑥]

2(𝑎 − 𝑏)2
−

cos[(𝑎 + 𝑏)𝑥]

2(𝑎 + 𝑏)2
 

                                                  +
𝑥 sin[(𝑎 − 𝑏)𝑥]

2(𝑎 − 𝑏)2
−

𝑥 sin[(𝑎 + 𝑏)𝑥]

2(𝑎 + 𝑏)2
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∴ ⟨𝜓𝑚|𝜇̂𝑥|𝜓𝑛⟩ =
2𝑞

𝐿

[
 
 
 
 

cos[(𝑚 − 𝑛)𝜋𝑥 𝐿⁄ ]

2(𝑚 − 𝑛)2𝜋2 𝐿2⁄
−

cos[(𝑚 + 𝑛)𝜋𝑥 𝐿⁄ ]

2(𝑚 + 𝑛)2𝜋2 𝐿2⁄

+
𝑥 sin[(𝑚 − 𝑛)𝜋𝑥 𝐿⁄ ]

2(𝑚 − 𝑛)2𝜋2 𝐿2⁄
−

𝑥 sin[(𝑚 + 𝑛)𝜋𝑥 𝐿⁄ ]

2(𝑚 + 𝑛)2𝜋2 𝐿2⁄ ]
 
 
 
 

 

Therefore, 

⟨𝜓𝑚|𝜇̂𝑥|𝜓𝑛⟩ = 2𝑞𝐿

[
 
 
 
 
 cos[(𝑚 − 𝑛)𝜋𝑥 𝐿⁄ ]

2(𝑚 − 𝑛)2𝜋2
|
0

𝐿

−
cos[(𝑚 + 𝑛)𝜋𝑥 𝐿⁄ ]

2(𝑚 + 𝑛)2𝜋2
|
0

𝐿

+
𝑥 sin[(𝑚 − 𝑛)𝜋𝑥 𝐿⁄ ]

2(𝑚 − 𝑛)2𝜋2
|
0

𝐿

−
𝑥 sin[(𝑚 + 𝑛)𝜋𝑥 𝐿⁄ ]

2(𝑚 + 𝑛)2𝜋2
|
0

𝐿

]
 
 
 
 
 

 

⟨𝜓𝑚|𝜇̂𝑥|𝜓𝑛⟩ = 2𝑞𝐿

[
 
 
 

1

2(𝑚 − 𝑛)2𝜋2
{cos(𝑚 − 𝑛)𝜋 − 1 + 𝑥 sin(𝑚 − 𝑛)𝜋 − 0}

−
1

2(𝑚 + 𝑛)2𝜋2
{cos(𝑚 + 𝑛)𝜋 − 1 + 𝑥 sin(𝑚 + 𝑛)𝜋 − 0}

]
 
 
 

 

Note that, all sine terms are zero, irrespective of the values of 𝑚 and 𝑛. 

∴ ⟨𝜓𝑚|𝜇̂𝑥|𝜓𝑛⟩ =
𝑞𝐿

𝜋2 [
1

(𝑚 − 𝑛)2
{cos(𝑚 − 𝑛)𝜋 − 1} −

1

(𝑚 + 𝑛)2
{cos(𝑚 + 𝑛)𝜋 − 1}] 

or, ⟨𝜓𝑚|𝜇̂𝑥|𝜓𝑛⟩ =
𝑞𝐿

𝜋2 [
1

(𝑚 − 𝑛)2 {(−1)(𝑚−𝑛) − 1} −
1

(𝑚 + 𝑛)2 {(−1)(𝑚+𝑛) − 1}] 

Thus, 

⟨𝜓𝑚|𝜇̂𝑥|𝜓𝑛⟩ =
𝑞𝐿

𝜋2 [
1

(𝑚 − 𝑛)2 {(−1)(𝑚−𝑛) − 1} −
1

(𝑚 + 𝑛)2 {(−1)(𝑚+𝑛) − 1}] 

The first term in the square bracket is non-zero only if (𝑚 − 𝑛) is odd; the second term is non-vanishing 
provided (𝑚 + 𝑛) is odd. These determine the rules for the spectroscopic transitions for the system. 
 
Case-2: Electric-dipole selection rules for a one-dimensional harmonic oscillator of charge 𝑞. We must find 
out 𝑞⟨𝑚|𝑥|𝑛⟩. We recall that,  

𝑥 = (
ℏ

2𝑚𝜔
)
1 2⁄

(𝑎 + 𝑎†), 

so that, 

⟨𝑚|𝑥|𝑛⟩ = ⟨𝑚|𝑎 + 𝑎†|𝑛⟩ = ⟨𝑚|𝑎|𝑛⟩ + ⟨𝑚|𝑎†|𝑛⟩ = √𝑛⟨𝑚|𝑛 − 1⟩ + √𝑛 + 1⟨𝑚|𝑛 + 1⟩ 
Since, SHO eigenfunctions are orthonormal, either 𝑚 = 𝑛 − 1, or 𝑚 = 𝑛 + 1, that is, 𝑚 − 𝑛 = ±1. 
Therefore, for the 1D SHO, the selection rule will be, Δ𝑣 = ±1. 
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LASERs are designed to amplify light by the stimulated emission of radiation. For this amplification to occur, 
a photon that passes through the sample of atoms must have a greater probability of stimulating emission 
from an electronically excited atom than of being absorbed by an atom in its ground state. This condition 
requires that the rate of stimulated emission be greater than the rate of absorption, or from 

−
𝑑𝑁𝑚(𝑡)

𝑑𝑡
= 𝐵𝑛𝑚𝜌(𝜈𝑛𝑚)𝑁𝑚(𝑡) (stimulated emission only) 

and  

−
𝑑𝑁𝑛(𝑡)

𝑑𝑡
=
𝑑𝑁𝑚(𝑡)

𝑑𝑡
= 𝐵𝑚𝑛𝜌(𝜈𝑚𝑛)𝑁𝑛(𝑡) (absorption only), 

we should have, 
𝐵𝑛𝑚𝜌(𝜈𝑛𝑚)𝑁𝑚(𝑡) > 𝐵𝑚𝑛𝜌(𝜈𝑚𝑛)𝑁𝑛(𝑡). 

Now, since, 𝐵𝑛𝑚 = 𝐵𝑚𝑛 = 𝐵, 𝐴𝑛𝑚 = 𝐴, and 𝜌(𝜈𝑛𝑚) = 𝜌(𝜈𝑚𝑛) = 𝜌(𝜈), the stimulated emission can be 
more probable than absorption only when, 𝑁𝑚(𝑡) > 𝑁𝑛(𝑡), or when the population of the excited state is 
greater than that of the lower state. Such a situation is called population inversion. Now, from, 

𝑁𝑚 𝑁𝑛⁄ = 𝑒−(𝐸𝑚−𝐸𝑛) 𝑘𝐵𝑇⁄ = 𝑒−ℎ𝜈𝑚𝑛 𝑘𝐵𝑇⁄  
𝑁𝑚 must be less than 𝑁𝑛, because ℎ𝜈𝑛𝑚 𝑘𝐵𝑇⁄  is a positive quantity. Therefore, a population inversion, for 
which, 𝑁𝑚(𝑡) > 𝑁𝑛(𝑡), is a non-equilibrium situation. Thus, before we can expect light amplification, a 
population inversion between the upper and lower levels must be generated. Can we achieve a population 
inversion for a two-level system? The rate equation for a non-degenerate two-level system is given by,  

−
𝑑𝑁𝑛(𝑡)

𝑑𝑡
=
𝑑𝑁𝑚(𝑡)

𝑑𝑡
= 𝐵𝜌(𝜈)𝑁𝑛(𝑡) − 𝐴𝑁𝑚(𝑡) − 𝐵𝜌(𝜈)𝑁𝑚(𝑡) 

or, −
𝑑𝑁𝑛(𝑡)

𝑑𝑡
=
𝑑𝑁𝑚(𝑡)

𝑑𝑡
= 𝐵𝜌(𝜈)[𝑁𝑛(𝑡) − 𝑁𝑚(𝑡)] − 𝐴𝑁𝑚(𝑡) 

Say, 𝑁𝑡𝑜𝑡𝑎𝑙 = 𝑁𝑛(𝑡) + 𝑁𝑚(𝑡), is the total number of particles in the system, which remains constant for a 
closed system. We note that 𝑁𝑛(𝑡) and 𝑁𝑚(𝑡) vary with time to keep 𝑁𝑡𝑜𝑡𝑎𝑙 a constant of time. If we assume 
that all the atoms are in the ground state at time 𝑡 = 0, so that 𝑁𝑛(0) = 𝑁𝑡𝑜𝑡𝑎𝑙 and 𝑁𝑚(0) = 0, so that, from 

𝑑𝑁𝑚(𝑡)

𝑑𝑡
= 𝐵𝜌(𝜈)[𝑁𝑛(𝑡) − 𝑁𝑚(𝑡)] − 𝐴𝑁𝑚(𝑡) 

we will have, upon substituting 𝑁𝑛(𝑡) = 𝑁𝑡𝑜𝑡𝑎𝑙 −𝑁𝑚(𝑡), 
𝑑𝑁𝑚(𝑡)

𝑑𝑡
= 𝐵𝜌(𝜈)[𝑁𝑡𝑜𝑡𝑎𝑙 −𝑁𝑚(𝑡) − 𝑁𝑚(𝑡)] − 𝐴𝑁𝑚(𝑡) = 𝐵𝜌(𝜈)[𝑁𝑡𝑜𝑡𝑎𝑙 − 2𝑁𝑚(𝑡)] − 𝐴𝑁𝑚(𝑡) 

or,
𝑑𝑁𝑚(𝑡)

𝑑𝑡
= 𝐵𝜌(𝜈)𝑁𝑡𝑜𝑡𝑎𝑙 − 2𝐵𝜌(𝜈)𝑁𝑚(𝑡) − 𝐴𝑁𝑚(𝑡) = 𝐵𝜌(𝜈)𝑁𝑡𝑜𝑡𝑎𝑙 − [2𝐵𝜌(𝜈) + 𝐴]𝑁𝑚(𝑡) 

or, 𝑑𝑡 =
𝑑𝑁𝑚(𝑡)

𝐵𝜌(𝜈)𝑁𝑡𝑜𝑡𝑎𝑙 − [𝐴 + 2𝐵𝜌(𝜈)]𝑁𝑚(𝑡)
 

For simplicity, let us substitute 𝛼 = 𝐵𝜌(𝜈)𝑁𝑡𝑜𝑡𝑎𝑙 and 𝛽 = 𝐴 + 2𝐵𝜌(𝜈).  

∴ 𝑑𝑡 =
𝑑𝑁𝑚(𝑡)

𝛼 − 𝛽𝑁𝑚(𝑡)
 

Now, say, 𝑢 = 𝛼 − 𝛽𝑁𝑚(𝑡), so that, 𝑑𝑢 = −𝛽𝑑𝑁𝑚(𝑡) ⇒ 𝑑𝑁𝑚(𝑡) = −(1 𝛽⁄ )𝑑𝑢 

𝑑𝑡 = −
1

𝛽

𝑑𝑢

𝑢
 

Integrating both sides of the equation, we get ln 𝑢 = −𝛽𝑡.  

∴ 𝑢 = 𝑒−𝛽𝑡 ⇒ 𝛼 − 𝛽𝑁𝑚(𝑡) = 𝑒−𝛽𝑡 ⇒ 𝑁𝑚(𝑡) =
𝛼

𝛽
−
1

𝛽
𝑒−𝛽𝑡 ⇒ 𝑁𝑚(𝑡) =

𝛼

𝛽
(1 −

𝑒−𝛽𝑡

𝛼
) 

∴ 𝑁𝑚(𝑡) =
𝐵𝜌(𝜈)𝑁𝑡𝑜𝑡𝑎𝑙
𝐴 + 2𝐵𝜌(𝜈)

[1 −
𝑒−[2𝐵𝜌(𝜈)+𝐴]𝑡

𝐵𝜌(𝜈)𝑁𝑡𝑜𝑡𝑎𝑙
] ⇒

𝑁𝑚(𝑡)

𝑁𝑡𝑜𝑡𝑎𝑙
=

𝐵𝜌(𝜈)

𝐴 + 2𝐵𝜌(𝜈)
[1 −

𝑒−[2𝐵𝜌(𝜈)+𝐴]𝑡

𝐵𝜌(𝜈)𝑁𝑡𝑜𝑡𝑎𝑙
] 

When 𝑡 → ∞, 𝑒−[𝐴+2𝐵𝜌(𝜈)]𝑡 → 0, so that 
𝑁𝑚(∞)

𝑁𝑡𝑜𝑡𝑎𝑙
=

𝐵𝜌(𝜈)

𝐴 + 2𝐵𝜌(𝜈)
 

Now, if 𝐴 = 0, there is no spontaneous emission. Hence, 
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𝑁𝑚(∞)

𝑁𝑡𝑜𝑡𝑎𝑙
=
1

2
 

However, 𝐴 > 0, always, so that 𝐴 + 2𝐵𝜌(𝜈) > 𝐵𝜌(𝜈), and hence 
𝑁𝑚(𝑡)

𝑁𝑡𝑜𝑡𝑎𝑙
<
1

2
⇒

𝑁𝑚(𝑡)

𝑁𝑛(𝑡) + 𝑁𝑚(𝑡)
<
1

2
⇒

1

𝑁𝑛(𝑡)
𝑁𝑚(𝑡)

+ 1
<
1

2
 

∴
𝑁𝑛(𝑡)

𝑁𝑚(𝑡)
> 1 ⇒

𝑁𝑚(𝑡)

𝑁𝑛(𝑡)
< 1 

So, the number of atoms in the excited state can never exceed the number of atoms in the ground state. 
Thus, a population inversion cannot occur in a two-level system. 

 
How does the system relax back to equilibrium once the incident light source is turned off? Once the light 
source is turned off, the only pathway by which an excited atom can return to its ground state is by 
spontaneous emission. Since under such a situation, 𝜌(𝜈) = 0, the rate equation, 

𝑑𝑁𝑚(𝑡)

𝑑𝑡
= 𝐵𝜌(𝜈)[𝑁𝑛(𝑡) − 𝑁𝑚(𝑡)] − 𝐴𝑁𝑚(𝑡) 

becomes  
𝑑𝑁𝑚(𝑡)

𝑑𝑡
= −𝐴𝑁𝑚(𝑡), 

which, upon integration, gives, 
𝑁𝑚(𝑡) = 𝑁𝑚(0)𝑒

−𝐴𝑡. 
The reciprocal of 𝐴 is denoted by 𝜏𝑅 and is called the fluorescence lifetime or the radiative lifetime. We will 
see, that a three-level system can undergo a population inversion and demonstrate lasing. 
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A Three-Level System 
Each level is once again assumed to be non-degenerate and therefore represents a single state of the system. 
Pump light of frequency given by ℎ𝜈31 = 𝐸3 − 𝐸1 excites an atom from the ground state (state 1) to state 3. 
Once populated, this excited state can relax by spontaneous emission to states 2 or 1 or by stimulated 
emission back to the ground state. 

 
Those excited-state atoms that relax by spontaneous emission to state 2 will also undergo spontaneous 
emission to state 1. If light of energy ℎ𝜈32 = 𝐸3 − 𝐸2 is incident on the system, absorption and stimulated 
emission can occur between the excited states 3 and 2. We will show that under certain conditions, a 
population inversion can be achieved between the two excited states (that is, 𝑁3 > 𝑁2). Such a system 
provides a medium for the amplification of light of energy ℎ𝜈32 = 𝐸3 − 𝐸2 and is said to be able to lase. The 
double-headed arrows indicate that both absorption and stimulated emission occur between the two states. 
A single 𝐵 coefficient is used for absorption and stimulated emission between a set of two states because we 
know that 𝐵𝑖𝑗 = 𝐵𝑗𝑖. Initially, all atoms are in the ground state, so that 𝑁1(0) = 𝑁𝑡𝑜𝑡𝑎𝑙. We consider the case 

in which this three-level system is exposed to an incident light beam of spectral radiant energy density, 
𝜌𝜈(𝜈31) (where ℎ𝜈31 = 𝐸3 − 𝐸1), which excites atoms from level 1 to level 3. A light beam such as this one 
that is used to create excited-state populations is referred to as a pump source. The pump source is assumed 
to have no spectral radiant energy density at ℎ𝜈12 = 𝐸2 − 𝐸1, and as a result no atoms are excited to state 
2. Once an atom populates state 3, it can decay by stimulated emission back to state 1 (induced by the pump 
source) or by spontaneous emission to either state 2 or state 1. The rates of spontaneous emission to state 
2 and state 1 can be different. Thus, we must include subscripts on the 𝐴 coefficients to indicate explicitly 
the two states involved in the transition. An atom that relaxes from state 3 to state 2 can in turn relax back 
to the ground state by spontaneous emission. 
 
If light of frequency 𝜈32 (ℎ𝜈32 = 𝐸3 − 𝐸2) is available, both absorption and stimulated emission can occur 
between states 3 and 2. The pump source is assumed to have no spectral radiant energy density at ℎ𝜈12 =
𝐸2 − 𝐸1, and as a result no atoms are excited to state 2. Light of this energy is inevitably available because it 
is generated by the spontaneous emission process between these two levels. For a three-level system, the 
sum of the populations of the individual energy levels is equal to the total number of atoms: 

𝑁𝑡𝑜𝑡𝑎𝑙 = 𝑁1(𝑡) + 𝑁2(𝑡) + 𝑁3(𝑡) 
Let us consider these rate equations one by one. First consider 𝑑𝑁1 𝑑𝑡⁄ . There are four parts to the rate 
equation: excitation 1 → 3, stimulated emission 3 → 1, spontaneous emission 3 → 1, and spontaneous 
emission 2 → 1.  

𝑑𝑁1

𝑑𝑡
= −𝐵31𝜌𝜈(𝜈31)𝑁1 + 𝐵31𝜌𝜈(𝜈31)𝑁3 + 𝐴31𝑁3 + 𝐴21𝑁2 (𝑅1) 

Similarly, for 𝑑𝑁2 𝑑𝑡⁄ , we must take into account: spontaneous emission 3 → 2, spontaneous emission 2 →
1, stimulated emission 3 → 2, and absorption 2 → 3.  

𝑑𝑁2

𝑑𝑡
= 𝐴32𝑁3 − 𝐴21𝑁2 + 𝐵32𝜌𝜈(𝜈32)𝑁3 − 𝐵32𝜌𝜈(𝜈32)𝑁2 (𝑅2) 

Finally, for 𝑑𝑁3 𝑑𝑡⁄ , we consider: absorption 1 → 3, stimulated emission 3 → 1, spontaneous emission 3 →
2, spontaneous emission 3 → 1, stimulated emission 3 → 2, and absorption 2 → 3. 
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𝑑𝑁3

𝑑𝑡
= 𝐵31𝜌𝜈(𝜈31)𝑁1 − 𝐵31𝜌𝜈(𝜈31)𝑁3 − 𝐴32𝑁3 − 𝐴31𝑁3 

−𝐵32𝜌𝜈(𝜈32)𝑁3 + 𝐵32𝜌𝜈(𝜈32)𝑁2 (𝑅3) 
Because each level is non-degenerate, the rate equations (𝑅1), (𝑅2) and (𝑅3) apply to the populations of 
states 1,  2, and 3. When the system achieves equilibrium, the population of each level will remain constant, 
so that, 

𝑑𝑁1

𝑑𝑡
= 0,

𝑑𝑁2

𝑑𝑡
= 0,  and,

𝑑𝑁3

𝑑𝑡
= 0 

Although the three rate equations can be written and solved exactly to generate expressions for the time-
dependent and equilibrium values of 𝑁1, 𝑁2 and 𝑁3, we can learn an important result by considering only 
the rate equation for state 2. The population of state 2, 𝑁2, is a balance between spontaneous emission 3 →
2 (𝐴32𝑁3), spontaneous emission 2 → 1 (𝐴21𝑁1), stimulated emission 3 → 2 [𝐵32𝜌𝜈(𝜈32)𝑁3] and 
absorption 2 → 3 [𝐵32𝜌𝜈(𝜈32)𝑁2]. At equilibrium, 𝑑𝑁2 𝑑𝑡⁄ = 0, and 

𝑑𝑁2

𝑑𝑡
= 0 = 𝐴32𝑁3 − 𝐴21𝑁2 + 𝐵32𝜌𝜈(𝜈32)𝑁3 − 𝐵32𝜌𝜈(𝜈32)𝑁2 

∴ 𝑁3[𝐴32 + 𝐵32𝜌𝜈(𝜈32)] = 𝑁2[𝐴21 + 𝐵32𝜌𝜈(𝜈32)] 

∴
𝑁3

𝑁2
=

𝐴21 + 𝐵32𝜌𝜈(𝜈32)

𝐴32 + 𝐵32𝜌𝜈(𝜈32)
 

Note that, 𝑁3 can be larger than 𝑁2 if 𝐴21 > 𝐴32. 
∴ A population inversion is possible between states 3 and 2 when the atoms excited to state 3 decay relatively 
slowly to state 2 and those in state 2 decay rapidly back to the ground state. 

 
If this is the case, a population of state 3 can be built up, and a system of atoms that satisfies this condition 
may lase. Such a system is called a gain medium. 
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